zbMATH — the first resource for mathematics

The role of interconnection patterns on synchronizability of duplex oscillatory power network. (English) Zbl 07274910
Summary: This paper firstly proposes a multiplex oscillatory power network dynamical model, and then investigates the influence of interconnection patterns on synchronous ability of duplex power network being comprised of two subnetworks. In this work, we provide analytical vital conditions for synchronous stability in a multiplex oscillatory power network. Meanwhile, the relationship between interconnection types and synchronizability of duplex oscillatory power network is investigated. Moreover, we also find a counterintuitive phenomenon of connecting high-degree nodes where the synchronization has worst performance, on a specific duplex network composed of two star networks. In addition, our results show that increasing the interlink number favors synchronizability of duplex network consisting of two ring networks with the same properties in separate layers. However, the interlink number has no obvious effect on synchronizability for oscillatory network with strong heterogeneity in separate layers. Nonetheless, synchronization has better performance for duplex network composed of two ring networks than two star networks when the inter-layer connections are one-to-one. Our results provide an innovative guide for constructing a cost-effective multiplex power network.
05C82 Small world graphs, complex networks (graph-theoretic aspects)
94C15 Applications of graph theory to circuits and networks
Full Text: DOI
[1] Pagani, G. A.; Aiello, M., The power grid as a complex network: a survey, Physica A, 392, 2688-2700 (2013) · Zbl 1395.94418
[2] Pourbeik, P.; Kundur, P. S.; Taylor, C. W., The anatomy of a power grid blackout-root causes and dynamics of recent major blackouts, Power Energy Mag IEEE, 4, 22-29 (2006)
[3] Newman, M. E.J., Fast algorithm for detecting community structure in networks, Phys Rev E, 69, Article 066133 pp. (2004)
[4] Newman, M. E.J., Modularity and community structure in networks, Proc Natl Acad Sci, 103, 8577-8582 (2006)
[5] Rubido, N.; Grebogi, C.; Baptista, M. S., Structure and function in flow networks, Europhys Lett, 101, 68001 (2013)
[6] Coletta, T.; Jacquod, P., Linear stability and the Braess paradox in coupled-oscillator networks and electric power grids, Phys Rev E, 93, Article 032222 pp. (2016)
[7] Pasqualetti, F.; Bicchi, A.; Bullo, F., A graph-theoretical characterization of power network vulnerabilities, (Proceedings of the IEEE 2011 conference on American Control Conference (2011)), 3918-3923
[8] Pagani, G. A.; Aiello, M., Power grid complex network evolutions for the smart grid, Phys A, 396, 248-266 (2014)
[9] Florian, D.; Michael, C.; Francesco, B., Synchronization in complex oscillator networks and smart grids, PNAS, 110, 2005-2010 (2013) · Zbl 1292.94185
[10] Guo, Z. Y.; Yang, S. F.; Wang, J., Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling, IEEE Trans Neural Netw Learning Syst, 26, 1300-1311 (2015)
[11] Boccaletti, S.; Bianconi, G.; Criado, R., The structure and dynamics of multilayer networks, Phys Rep, 544, 1-122 (2014)
[12] Valles-Catala, T.; Massucci, F. A.; Guimera, R.; Sales-Pardo, M., Multilayer stochastic block models reveal the multilayer structure of complex networks, Phys Rev X, 6, Article 011036 pp. (2016)
[13] Lu, R.; Yu, W.; Lu, J. H., Synchronization on complex networks of networks, IEEE Trans Neural Netw Learn Syst, 25, 2110-2118 (2014)
[14] He, W.; Chen, G.; Han, Q. L., Multiagent systems on multilayer networks: Synchronization analysis and network design, IEEE Trans Syst Man Cybern Syst, 47, 1655-1667 (2017)
[15] Gao, J.; Buldyrev, S. V.; Stanley, H. E., Networks formed from Interdependent networks, Nat Phys, 8, 40-47 (2012)
[16] Witthaut, D.; Timme, M., Braess’s paradox in oscillator networks,desynchronization and power outage, New J Phys, 14, Article 083036 pp. (2012)
[17] Lee, K. M.; Kim, J. Y.; Cho, W. K., Correlated multiplexity and connectivity of multiplex random networks, New J Phys, 14, Article 033027 pp. (2012)
[18] Shen, J.; Tang, L. K., Intra-layer synchronization in duplex networks, Chin Phys B, 27, Article 100503 pp. (2018)
[19] Liu, Y. Y.; Zhao, C. L.; Yi, Dongyun, Robustness of partially interdependent networks under combined attack, Chaos, 29, Article 021101 pp. (2019)
[20] Huang, X.; Gao, J.; Buldyrev, S. V., Robustness of interdependent networks under targeted attack, Phys Rev E, 83, Article 065101 pp. (2011)
[21] Tang, L.; Lu, J. A.; L¨u, J., Bifurcation analysis of synchronized regions in complex dynamical networks with coupling delay, Int J Bifurcation Chaos, 24, Article 1450011 pp. (2014) · Zbl 1284.34093
[22] Carareto, B.; Baptista, M. S.; Grebogi, C., Natural synchronization in power-grids with anti-correlated unit, Commun Nonlinear Sci Numer Simul, 3, 4-15 (2013)
[23] Yang, L. X.; Jiang, J., Influence of edge additions on the synchronizability of oscillatory power networks, Commun Nonlinear Sci Numer Simul, 41, 11-18 (2016) · Zbl 07250005
[24] Carareto, R.; Orsatti, F. M.; Piqueira, J. R.C., Optimized network structure for fullsynchronization, Commun Nonlinear Sci Numer Simul, 14, 2536-2541 (2009) · Zbl 1221.34143
[25] Tang, L. K.; Wu, X. Q.; Lu, J. H., Master stability functions for complete, intralayer, and interlayer synchronization in multiplex networks of coupled Rössler oscillators, Phys Rev E, 99, Article 012304 pp. (2019)
[26] Xu, M.; Zhou, J.; Lu, J. A., Synchronizability of two-layer networks, Eur Phys J, 88, 240 (2015)
[27] Li, Y.; Wu, X.; Lu, J. A., Synchronizability of duplex networks, IEEE Trans Circuits Sys II, 63, 206-210 (2015)
[28] Sevilla-Escoboza, R.; Sendina-Nadal, I.; Leyva, I., Inter-layer synchronization in multiplex networks of identical layers, Chaos, 26, Article 065304 pp. (2016) · Zbl 1374.34214
[29] Baptista1, M. S.; Szmoski, R. M.; Pereira, R. F., Chaotic, informational and synchronous behaviour of multiplex networks, Sci Rep, 6, 22617 (2016)
[30] Filatrella, G.; Nielsen, A. H.; Pedersen, N. F., Analysis of a power grid using a Kuramoto-like model, Eur Phys J B-Condens Matter Complex Syst, 61, 485-491 (2008)
[31] Aguirre, J.; Sevilla-Escoboza, R.; Gutiérrez, R., synchronization of interconnected networks: the role of connector nodes, Phys Rev Lett, 112, Article 248701 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.