zbMATH — the first resource for mathematics

Anomalous fractional magnetic field diffusion through cross-section of a massive toroidal ferromagnetic core. (English) Zbl 07274869
Summary: Toroidal massive ferromagnetic cores are used in a wide range of electromagnetic applications, such as current sensors, inductances, static converters and filters. Growing interest exists in the industrial field with regards simulation tools to reduce experimental campaigns and improve product knowledge and performance. Accurate simulation results require a consideration of precise electromagnetic laws, such as the exact non-linear magnetic behavior of toroidal magnetic cores. Under the influence of an external surface magnetic field that was created by a surrounding coil, the local magnetic state through a ferromagnetic core cross-section was ruled by a combination of magnetic domain kinetics and external magnetic field diffusion. Conventional methods to simulate magnetic behavior are based on a separation of magnetic contributions, where microscopic Eddy currents from domain wall motions and macroscopic currents from external magnetic field variations are considered separately. This separation is artificial, because both loss mechanisms occur simultaneously and interact. In this study, an alternative solution was proposed through the resolution of a two-dimensional anomalous fractional magnetic field diffusion. The fractional order constitutes an additional degree of freedom in the simulation scheme, which can be identified by comparison with the experimental results. By adjusting this order, accurate local and global simulation results can be obtained on a broad frequency bandwidth and allow for the precise prediction of the dynamic magnetic behavior of a toroidal massive magnetic core.
94A Communication, information
26A Functions of one variable
Full Text: DOI
[1] Gyselinck, J.; Vandevelde, L.; Dular, P.; Geuzaine, C.; Legros, W., A general method for the frequency demain FE modeling of rotating electromagnetic devices, IEEE Trans Mag, 39, 3, 1147-1150 (2003), iss
[2] Letosa, J.; Artal, J. S.; Samplon, M.; Uson, A.; Arcega, F. J., Modelization of current sensors by finite elements method, Measurement, 35, 3, 233-241 (2004), iss
[3] B. Bao, Y. Zhou, P. Yang, G. Wang, “Theoritical and experimental study on novel weak current sensor using single nanocrystalline toroidal core with double-winding”, vol. 141, iss. 1, pp. 84-88, 2008.
[4] J. Arcas, C. Gomez-Polo, M. Vazquez, A. Hernando, “Sensor applications based on induced magnetic anisotropy in toroidal cores”, 59, iss. 1-3, pp. 101-104, 1997.
[5] B. Orlando, R. Hida, R. Cuchet, M. Audoin, B. Viala, D. Pellissier-Tanon, X. Gagnard, P. Ancey, “Low-resistance integrated toroidal inductor for power management”, 42, iss. 10, pp. 3374-3376, 2006.
[6] Ryu, H. J.; Kim, S. D.; Lee, J. J.; Kim, J.; Han, S. H.; Kim, H. J.; Ahn, C. H., 2D and 3D simulation of toroidal type thin film inductors, IEEE Trans Mag, 34, 4, 1360-1362 (1998), iss
[7] Bertotti, G., Hysteresis in magnetism (1987), Academic Press, Elsevier: Academic Press, Elsevier New York
[8] Ducharne, B.; Tene Deffo, Y. A.; Zhang, B.; Sebald, G., Anomalous fractional diffusion equation for magnetic losses in a ferromagnetic lamination, The Eur Phys J Plus, 135, 325 (2020)
[9] Steinmetz, C. P., On the law of hysteresis, Proc IEEE, 72, 2, 196-221 (1984), iss
[10] Bertotti, G., General properties of power losses in soft ferromagnetic materials, IEEE Trans Mag, 24, 1, 621-630 (1980), iss
[11] Raulet, M. A.; Ducharne, B.; Masson, J. P.; Bayada, G., The magnetic field diffusion equation including dynamic hysteresis: a linear formulation of the problem, IEEE Trans Mag, 40, 2, 872-875 (2004), iss
[12] Ducharne, B.; Sebald, G.; Guyomar, D.; Litak, G., Fractional model of magnetic field penetration into a toroidal soft ferromagnetic sample, Int J Dyn Cont, 6, 89-96 (2017)
[13] Engheia, N., On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propagat Mag, 39, 4, 35-46 (1997), iss
[14] Tenreiro Machado, J. A.; Jesus, I. S.; Galhano, A.; Cunha, J. B., Fractional order electromagnetics, Signal Process, 86, 10, 2637-2644 (2006), iss · Zbl 1172.94454
[15] Garrappa, R., Grunwald-Letnikov operators for fractional relaxation in Havriliak-Negami models, Commun Nonlinear Sci Numer Simul, 38, 178-191 (2016) · Zbl 07247752
[16] Guyomar, D.; Ducharne, B.; Sebald, G., The use of fractional derivation in modeling ferroelectric dynamic hysteresis behavior over large frequency bandwidth, J Appl Phys, 107, 11, Article 114108 pp. (2010), issn°
[17] Zhang, B.; Ducharne, B.; Sebald, G.; Guyomar, D., Characterization of fractional order for high-frequency bandwidth model of dielectric ferroelectrics, J Intel Mater Syst Struct JIMSS, 27, 4, 437-443 (2016), iss
[18] Gupta, B.; Ducharne, B.; Sebald, G.; Uchimoto, T., A space discretized ferromagnetic model for non-destructive eddy current evaluation, IEEE Trans Mag, 54, 3 (2018), iss
[19] Miller, K. S.; Ross, B., An introduction to the fractional calculus and fractional differential equations (1993), John Wiley & Sons: John Wiley & Sons New York, NY, USA · Zbl 0789.26002
[20] Oldham, K. B.; Spanier, J., The fractional calculus: theory and application of differentiation and integration to arbitrary order (1974), Academic Press: Academic Press New York, NY, USA · Zbl 0292.26011
[21] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun Nonlinear Sci Numer Simul, 16, 3, 1140-1153 (2011), n° · Zbl 1221.26002
[22] Riemann, B., Versuch Einer Allgemeinen Auffassung der Integration und Differentiation, Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Teubner, Leipzig, 1876 (1953), Dover: Dover New York, NY, USA
[23] Grünwald, A. K., Über “begrenzte” derivationen und deren anwendung, Zeitschrift für Mathematik und Physik, 12, 441-480 (1867)
[24] Letnikov, A. V., Theory of differentiation with an arbitrary index, Sbornik: Math, 3, 1-66 (1868), Russian
[25] Caputo, M., Linear models of dissipation whose q is almost frequency independent-ii, Geophys J R Astronom Soc, 13, 5, 529-539 (1967)
[26] Zhang, B.; Gupta, B.; Ducharne, B.; Sebald, G.; Uchimoto, T., Dynamic magnetic scalar hysteresis lump model, based on Jiles-Atherton quasi-static hysteresis model extended with dynamic fractional derivative contribution, IEEE Trans Mag, 54, 11, 1-5 (2018)
[27] Zhang, B.; Gupta, B.; Ducharne, B.; Sebald, G.; Uchimoto, T., Preisach’s model extended with dynamic fractional derivation contribution, IEEE Trans Mag, 54, 3 (2017), iss
[28] Ducharne, B.; Newell, B.; Sebald, G., A unique fractional derivative operator to simulate all dynamic piezo ceramic dielectric manifestations: from aging to frequency dependent hysteresis, IEEE Trans Ultrasonic Ferroelectricity Frequency Control, 67, 1, 197-206 (2019), iss
[29] IEC 60404-6, Magnetic materials—Part 6: Methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 100 kHz by the use of ring specimens, Int Elect Com (2018)
[30] Ducharne, B.; Sebald, G.; Guyomar, D.; Litak, G., Dynamics of magnetic field penetration into soft ferromagnets, J Appl Phys, 117, 24, Article 243907 pp. (2015), iss
[31] Leite, J. V.; Sadowski, N.; Kuo-Peng, P.; Batistela, N. J.; Bastos, J. P.A., The inverse Jiles-Atherton model parameters identification, IEEE Trans Mag, 39, 3, 1397-1400 (2003)
[32] Leite, J. V.; Sadowski, N.; Kuo-Peng, P.; Batistela, N. J.; Bastos, J. P.A.; de Espindola, A. A., Inverse Jiles- Atherton vector hysteresis model, IEEE Trans Mag, 40, 4, 1769-1775 (2004), iss
[33] Cardelli, E.; Torre, E. D.; Tellini, B., Direct and inverse Preisach modeling of soft materials, IEEE Trans Mag, 36, 4, 1267-1271 (2000), iss
[34] Jiles, D. C.; Atherton, D. L., Theory of ferromagnetic hysteresis, J Mag Mag Mat, 61, 48-60 (1986)
[35] Leite JV, Avila SL, Batistela NJ, Carpes WP, Sadowski N, Kuo-Peng P, Bastos JPA. “Real coded genetic algorithm for Jiles-Atherton model parameters identification”, vol. 40, iss. 2, pp. 888-891, 2004.
[36] Jiles, D., Introduction to magnetism and magnetic materials (1991), Chapman & Hall: Chapman & Hall New York
[37] Gupta, B.; Ducharne, B.; Uchimoto, T.; Sebald, G.; Miyazaki, T.; Takagi, T., Non-destructive testing on creep degraded 12% Cr-Mo-W-V ferritic test samples using Barkhausen noise, J Mag Mag Mat, 498, 166102 (2020), n°
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.