zbMATH — the first resource for mathematics

A polymatroid approach to generalized weights of rank metric codes. (English) Zbl 07272714
Summary: We consider the notion of a \((q, m)\)-polymatroid, due to K. Shiromoto [Des. Codes Cryptography 87, No. 8, 1765–1776 (2019; Zbl 1414.05071)], and the more general notion of \((q, m)\)-demi-polymatroid, and show how generalized weights can be defined for them. Further, we establish a duality for these weights analogous to Wei duality for generalized Hamming weights of linear codes. The corresponding results of Ravagnani for Delsarte rank metric codes, and Martínez-Peñas and Matsumoto for relative generalized rank weights are derived as a consequence.
94B60 Other types of codes
05B35 Combinatorial aspects of matroids and geometric lattices
15A03 Vector spaces, linear dependence, rank, lineability
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
Full Text: DOI
[1] Berhuy, G., Fasel, J., Garotta, O.: Rank weights for arbitrary finite field extensions. Adv. Math. Commun. (2020). 10.3934/amc.2020083
[2] Britz, T., Higher support matroids, Discret. Math., 307, 2300-2308 (2007) · Zbl 1121.05024
[3] Britz, T.; Johnsen, T.; Mayhew, D.; Shiromoto, K., Wei-type duality theorems for matroids, Des. Codes Cryptogr., 62, 331-341 (2012) · Zbl 1236.05054
[4] Britz, T.; Johnsen, T.; Martin, J., Chains, demi-matroids and profiles, IEEE Trans. Inform. Theory, 60, 986-991 (2014) · Zbl 1364.94591
[5] Britz, T.; Mammoliti, A.; Shiromoto, K., Wei-type duality theorems for rank metric codes, Des. Codes Cryptogr., 88, 1503-1519 (2020) · Zbl 07225543
[6] Delsarte, P., Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25, 226-241 (1978) · Zbl 0397.94012
[7] Ducoat, J.; Kyureghyan, GM; Pott, A., Generalized rank weights: a duality statement, Topics in Finite Fields, 114-123 (2015), Providence, RI: American Mathematical Society, Providence, RI
[8] Gabidulin, EM, Theory of codes with maximum rank distance, Probl. Inf. Transm., 21, 1-12 (1985) · Zbl 0585.94013
[9] Gorla, E.: Rank-Metric Codes. arXiv:1902.02650 [cs.IT] , 26 pp (2019).
[10] Gorla, E.; Jurrius, R.; Lopez, HH; Ravagnani, A., Rank-metric codes and q-polymatroids, J. Algebr. Combin., 52, 1-19 (2020) · Zbl 07243055
[11] Jurrius, R.; Pellikaan, R., On defining generalized rank weights, Adv. Math. Commun., 11, 225-235 (2017) · Zbl 1357.94082
[12] Jurrius, R.; Pellikaan, R., Defining the \(q\)-analogue of a matroid, Electron. J. Combin., 25, 32 (2018) · Zbl 1393.05071
[13] Kurihara, J.; Matsumoto, R.; Uyematsu, T., Relative generalized rank weight of linear codes and its applications to network coding, IEEE Trans. Inform. Theory, 61, 3912-3936 (2015) · Zbl 1359.94713
[14] Larsen, A.H.: Matroider og lineære koder, Master’s thesis, Univ. Bergen, Norway, (2005). http://bora.uib.no/bitstream/handle/1956/10780/Ann-Hege-totaloppgave.pdf?sequence=1
[15] Martínez-Peñas, U.; Matsumoto, R., Relative generalized matrix weights of matrix codes for universal security on wire-tap network, IEEE Trans. Inform. Theory, 64, 2529-2548 (2018) · Zbl 1390.94906
[16] Oggier, F., Sboui, A.: On the existence of generalized rank weights. In: Proc. Int. Symp. Inf. Theory Appl., pp. 406-410, (2012).
[17] Ravagnani, A., Rank-metric codes and their duality theory, Des. Codes Cryptogr., 80, 197-216 (2016) · Zbl 1348.94098
[18] Ravagnani, A., Generalized weights: an anticode approach, J. Pure Appl. Algeb., 220, 1946-1962 (2016) · Zbl 1345.94102
[19] Shiromoto, K., Codes with the rank metric and matroids, Des. Codes Cryptogr., 87, 1765-1776 (2019) · Zbl 1414.05071
[20] Wei, VK, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37, 1412-1418 (1991) · Zbl 0735.94008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.