×

Lagrangian manifolds and efficient short-wave asymptotics in a neighborhood of a caustic cusp. (English. Russian original) Zbl 1483.53094

Math. Notes 108, No. 3, 318-338 (2020); translation from Mat. Zametki 108, No. 3, 334-359 (2020).
Summary: We develop an approach to writing efficient short-wave asymptotics based on the representation of the Maslov canonical operator in a neighborhood of generic caustics in the form of special functions of a composite argument. A constructive method is proposed that allows expressing the canonical operator near a caustic cusp corresponding to the Lagrangian singularity of type \(A_3\) (standard cusp) in terms of the Pearcey function and its first derivatives. It is shown that, conversely, the representation of a Pearcey type integral via the canonical operator turns out to be a very simple way to obtain its asymptotics for large real values of the arguments in terms of Airy functions and WKB-type functions.

MSC:

53D12 Lagrangian submanifolds; Maslov index
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Maslov, V. P., Perturbation Theory and Asymptotic Methods (1965), Moscow: Izd. Mosk. Univ., Moscow
[2] Maslov, V. P.; Fedoryuk, M. V., Semiclassical Approximation for Equations of Quantum Mechanics (1976), Moscow: Nauka, Moscow · Zbl 0449.58002
[3] Wolfram Mathematica, www.wolfram.com.
[4] Dobrokhotov, S. Yu.; Nazaikinskii, V. E.; Shafarevich, A. I., New integral representations of the Maslov canonical operator in singular charts, Izv. Math., 81, 2, 286-328 (2017) · Zbl 1369.81033
[5] Arnol’d, V. I.; Varchenko, A. N.; Gusein-Zade, S. M., Singularities of Differentiable Mappings, Vol. 1: Classification of Critical Points, Caustics, and Wave Fronts (1982), Moscow: Nauka, Moscow · Zbl 0513.58001
[6] Maslov, V. P., Asymptotic Methods and Perturbation Theory (1988), Moscow: Nauka, Moscow · Zbl 0653.35002
[7] Babich, V. M.; Buldyrev, V. S., Asymptotic Methods in Short-Wave Diffraction Problems : The Method of Canonical Problems (1972), Moscow: Nauka, Moscow
[8] Fedoryuk, M. V., The Saddle-Point Method (1977), Moscow: Nauka, Moscow
[9] Borovikov, V. A.; Kinber, B. E., Geometrical Theory of Diffraction (1978), Moscow: Svyaz’, Moscow · Zbl 0815.00003
[10] Kravtsov, Yu. A.; Orlov, Yu. I., Geometrical Optics of Inhomogeneous Media (1980), Moscow: Nauka, Moscow
[11] Fedoryuk, M. V., Asymptotic Methods for Linear Ordinary Differential Equations (1983), Moscow: Nauka, Moscow · Zbl 0538.34001
[12] Kryukovskii, A. S.; Lukin, D. S., Boundary and Corner Catastrophes in Uniform Geometrical Theory of Diffraction (1999), Moscow: Mosk. Fiz.-Tekhn. Inst., Moscow
[13] Pearcey, T., The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic, Philos. Mag. (7), 37, 268, 311-317 (1946)
[14] Chester, C.; Friedman, B.; Ursell, F., An extension of the method of steepest descents, Proc. Cambridge Philos. Soc., 53, 3, 599-611 (1957) · Zbl 0082.28601
[15] Keller, J. B., Geometrical theory of diffraction, J. Opt. Soc. Amer., 52, 2, 116-130 (1962)
[16] Ludwig, D., Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math., 19, 215-250 (1966) · Zbl 0163.13703
[17] Bleistein, N., Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities, J. Math. Mech., 17, 533-559 (1967) · Zbl 0191.12403
[18] Ursell, F., Integrals with a large parameter. Several nearly coincident saddle points, Proc. Cambridge Philos. Soc., 72, 1, 49-65 (1972) · Zbl 0238.41008
[19] Duistermaat, J. J., Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math., 27, 207-281 (1974) · Zbl 0285.35010
[20] Berry, M. V.; Wright, F. J., Phase-space projection identities for diffraction catastrophes, J. Phys. A, 13, 1, 149-160 (1980) · Zbl 0422.58011
[21] Connor, J. N. L.; Farrelly, D., Theory of cusped rainbows in elastic scattering: uniform semiclassical calculations using Pearcey’s integral, J. Chem. Phys., 75, 6, 2831-2846 (1981)
[22] Kaminski, D., Asymptotic expansion of the Pearcey integral near the caustic, SIAM J. Math. Anal., 20, 4, 987-1005 (1989) · Zbl 0674.33008
[23] Paris, R. B., The asymptotic behaviour of Pearcey’s integral for complex variables, Proc. Roy. Soc. London Ser. A, 432, 391-426 (1991) · Zbl 0739.33014
[24] Berry, M. V.; Howls, C. J., Unfolding the high orders of asymptotic expansions with coalescing saddles: singularity theory, crossover and duality, Proc. Roy. Soc. London Ser. A, 443, 107-126 (1993) · Zbl 0803.58008
[25] Berry, M. V.; Howls, C. J., Overlapping Stokes smoothings: survival of the error function and canonical catastrophe integrals, Proc. Roy. Soc. London Ser. A, 444, 201-216 (1994) · Zbl 0788.65018
[26] Kaminski, D.; Paris, R. B., On the zeroes of the Pearcey integral, J. Comput. Appl. Math., 107, 1, 31-52 (1999) · Zbl 0931.41018
[27] Daalhuis, A. B. Olde, On the asymptotics for late coeffcients in uniform asymptotic expansions of integrals with coalescing saddles, Methods Appl. Anal., 7, 4, 727-745 (2000) · Zbl 1006.41021
[28] Olver, F. W. J., Asymptotics and special functions (1990), New York-London: Academic, New York-London · Zbl 0303.41035
[29] López, J. L.; Pagola, P., The Pearcey Integral in the Highly Oscillatory Region (2015), notfound: notfound, notfound · Zbl 1410.33033
[30] López, J. L.; Pagola, P., Analytic formulas for the evaluation of the Pearcey integral, Math. Comp., 86, 307, 2399-2407 (2016) · Zbl 1367.41021
[31] Berry, M. V.; Howls, C. J., Integrals with Coalescing Saddles, NIST Handbook of Mathematical Functions, 0, 775-793 (2010)
[32] Dobrokhotov, S. Yu.; Nazaikinskii, V. E., Efficient formulas for the Maslov canonical operator near a simple caustic, Russ. J. Math. Phys., 25, 4, 545-552 (2018) · Zbl 1406.81036
[33] Anikin, A. Yu.; Dobrokhotov, S. Yu.; Nazaikinskii, V. E.; Tsvetkova, A. V., Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems, Theoret. and Math. Phys., 201, 3, 1742-1770 (2019) · Zbl 1441.81091
[34] Malgrange, B., Ideals of differentiable functions (1966), Oxford: Oxford Univ. Press, Oxford · Zbl 0177.17902
[35] Korn, G. A.; Korn, T. M., Mathematical Handbook for Scientists and Engineers (1968), McGraw-Hill: New York, McGraw-Hill · Zbl 0177.29301
[36] Dobrokhotov, S. Yu.; Makrakis, G. N.; Nazaikinskii, V. E., Maslov’s canonical operator, Hörmander’s formula, and localization of the Berry-Balazs solution in the theory of wave beams, Theoret. and Math. Phys., 180, 2, 894-916 (2014) · Zbl 1323.81031
[37] Fock, V. A., On the canonical transformation in classical and quantum mechanics, Acta Phys. Acad. Sci. Hungaricae, 27, 1-4, 219-224 (1969)
[38] Reijnders, K. J. A.; Minenkov, D. S.; Katsnelson, M. I.; Dobrokhotov, S. Yu., Electronic optics in graphene in the semiclassical approximation, Ann. Phys., 397, 65-135 (2018) · Zbl 1397.78009
[39] Arnol’d, V. I., Characteristic class entering in quantization conditions, Functional Anal. Appl., 1, 1, 1-13 (1967) · Zbl 0175.20303
[40] Maslov, V. P., Operational Methods (1973), Moscow: Nauka, Moscow
[41] Dobrokhotov, S. Yu.; Zhevandrov, P. N., Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves, Russ. J. Math. Phys., 10, 1, 1-31 (2003) · Zbl 1065.76026
[42] Mishchenko, A. S.; Sternin, B. Yu.; Shatalov, V. E., Lagrangian Manifolds and the Canonical Operator Method (1978), Moscow: Nauka, Moscow
[43] Maslov, V. P., Complex WKB Method for Nonlinear Equations (1977), Moscow: Nauka, Moscow · Zbl 0449.58001
[44] Dobrokhotov, S. Yu.; Nazaikinskii, V. E.; Tolchennikov, A. A., Uniform formulas for the asymptotic solution of a linear pseudo-differential equation for water waves generated by a localized source, Russ. J. Math. Phys., 27, 2, 346-370 (2020) · Zbl 1448.35391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.