zbMATH — the first resource for mathematics

Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval. (English) Zbl 0727.46018
Summary: We consider various fractional properties of regularity for vector valued functions defined on an interval I. In other words we study the functions in the Sobolev spaces \(W^{s,p}(I;E)\), in the Nikolskii spaces \(N^{s,p}(I;E)\), or in the Besov spaces \(B_{\lambda}^{s,p}(I;E)\). These spaces are defined by integration and translation, and E is a Banach space. In particular, we study the dependence on the parameters s, p and \(\lambda\), that is imbeddings for different parameters. Moreover we compare each space to the others, and we give Lipschitz continuity, existence of traces and q-integrability properties. These results rely only on integration techniques.

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI
[1] P.Butzer - H.Berens,Semi-groups of operators and approximation, Springer-Verlag, 1967. · Zbl 0164.43702
[2] Grisvard, P., Commutativité de deux foncteurs d’interpolation et applications (II), J. Math. Pures et Appl., 45, 207-290 (1966) · Zbl 0173.15803
[3] Il’In, V. P., Sur un théorème de Hardy et Littlewood, Trudy Mat. Inst. Steklova, 53, 128-144 (1959) · Zbl 0092.28301
[4] Lions, J. L.; Magenes, E., Problèmes aux limites non homogènes, IV, Annali Scuola Norm. Sup. Pisa, 15, 311-326 (1961) · Zbl 0115.31302
[5] Lions, J. L.; Peetre, J., Sur une classe d’espaces d’interpolation, Publ. Math. de l’IH.E.S., Paris, no. 19, 5-68 (1964) · Zbl 0148.11403
[6] Simon, J., Compact sets in L^p(0, T; B), Annali Mat. Pura Applicata, (IV), 146, 65-96 (1987) · Zbl 0629.46031
[7] Triebel, H., Interpolation theory, function spaces, differential operators (1978), Amsterdam: North-Holland, Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.