×

zbMATH — the first resource for mathematics

Consensus on SO(3) with piecewise-continuous sinusoids. (English) Zbl 07269358
Summary: We present and analyze feedback control algorithms for multi-agent orientation consensus on SO(3), where each agent’s angular-velocity control is restricted to be a piecewise-continuous sinusoid. The main results are three algorithms for orientation consensus using piecewise-continuous sinusoidal controls. Each algorithm can either include or not include a leader, which can be either stationary or rotating. The first algorithm achieves almost global orientation consensus for the case where each agent uses absolute-orientation feedback of its neighbor agents. The second algorithm achieves local orientation consensus for the case where each agent uses relative-orientation feedback of its neighbor agents. The third algorithm achieves local reduced-orientation (i.e., pointing-direction) consensus for the case where each agent uses pointing-direction feedback of its neighbor agents. We also present numerical simulations to demonstrate these algorithms.
MSC:
93D50 Consensus
93A16 Multi-agent systems
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bai, H.; Arcak, M.; Wen, J. T., Rigid body attitude coordination without inertial frame information, Automatica, 44, 12, 3170-3175 (2008) · Zbl 1153.93422
[2] Bernstein, D. S., Matrix Mathematics: Theory, Facts, and Formulas (2009), Princeton University Press · Zbl 1183.15001
[3] Bernstein, D. S.; McClamroch, N. H.; Shen, J., Shape change actuation for precision attitude control, IEEE Control Systems Magazine, 23, 5, 44-56 (2003)
[4] Bhat, S. P.; Bernstein, D. S., A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon, Systems & Control Letters, 39, 1, 63-70 (2000) · Zbl 0986.93063
[5] Brewer, J. M., & Tsiotras, P. (2016). Partial attitude consensus for underactuated satellite clusters. In Conf. Dec. Contr. (pp. 3524-3529). Las Vegas, NV.
[6] Brockett, R. W.; Dai, L., Non-holonomic kinematics and the role of elliptic functions in constructive controllability, (Nonholonomic Motion Planning (1993), Springer US: Springer US Boston, MA), 1-21 · Zbl 0791.70009
[7] Bullo, F., & Murray, R. M. (1995). Proportional derivative (PD) control on the Euclidean group. In Proc. Euro. Contr. Conf. (pp. 1091-1097). Rome, Italy.
[8] Chaturvedi, N. A.; Sanyal, A. K.; McClamroch, N. H., Rigid-body attitude control: Using rotation matrices for continuous, singularity-free control laws, IEEE Control Systems Magazine, 31, 3, 30-51 (2011) · Zbl 1395.70027
[9] Chavan, R. A., Seigler, T. M., & Hoagg, J. B. (2020). Small-satellite attitude control using continuous but only piecewise-continuously differentiable sinusoidal controls. In Proc. Amer. Contr. Conf. (pp. 4932-4937). Denver, CO.
[10] Chavan, R. A., Wang, S., Seigler, T. M., & Hoagg, J. B. (2018). Consensus on SO(3) with piecewise-continuous sinusoids. In Proc. Amer. Contr. Conf. (pp. 1635-1640). Milwaukee, WI.
[11] Cho, S., McClamroch, N. H., & Reyhanoglu, M. (2000). Dynamics of multibody vehicles and their formulation as nonlinear control systems. In Proc. Amer. Contr. Conf., Vol. 6 (pp. 3908-3912).
[12] Crassidis, J. L.; Markley, F. L., Sliding mode control using modified rodrigues parameters, Journal of Guidance, Control, and Dynamics, 19, 6, 1381-1383 (1996) · Zbl 0865.93044
[13] Dimarogonas, D. V.; Tsiotras, P.; Kyriakopoulos, K. J., Leader-follower cooperative attitude control of multiple rigid bodies, Systems & Control Letters, 58, 6, 429-435 (2009) · Zbl 1161.93002
[14] Du, H.; Chen, M. Z.Q.; Guanghui, W., Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft, Journal of Guidance, Control, and Dynamics, 39, 4, 944-951 (2016)
[15] Dwyer, T. A.W., Exact nonlinear control of large angle rotational maneuvers, IEEE Transactions on Automatic Control, 29, 9, 769-774 (1984) · Zbl 0542.93032
[16] Erdong, J.; Xiaolei, J.; Zhaowei, S., Robust decentralized attitude coordination control of spacecraft formation, Systems & Control Letters, 57, 7, 567-577 (2008) · Zbl 1140.93008
[17] Koh, S. K.; Ananthasuresh, G. K., Inverse kinematics of an untethered rigid body undergoing a sequence of forward and reverse rotations, Journal of Mechanical Design, 126, 5, 813-821 (2004)
[18] Kristiansen, R., Nicklasson, P. J., & Gravdahl, J. T. (2006). Quaternion-based backstepping control of relative attitude in a spacecraft formation. In Proc. Conf. Dec. Contr. (pp, 5724-5729). San Diego, CA.
[19] Kristiansen, R.; Nicklasson, P. J.; Gravdahl, J. T., Satellite attitude control by quaternion-based backstepping, IEEE Transactions on Control Systems Technology, 17, 1, 227-232 (2009)
[20] Kuo, Y.; Wu, T., Open-loop and closed-loop attitude dynamics and controls of miniature spacecraft using pseudowheels, Computers & Mathematics with Applications, 64, 5, 1282-1290 (2012)
[21] Lawton, J. R.; Beard, R. W., Synchronized multiple spacecraft rotations, Automatica, 38, 8, 1359-1364 (2002) · Zbl 1032.93553
[22] Lee, B.; Kang, S.; Ahn, H., Distributed orientation estimation in SO \((d)\) and applications to formation control and network localization, IEEE Transactions on Control of Network Systems, 6, 4, 1302-1312 (2019) · Zbl 07159358
[23] Lee, D.; Kim, H. J.; Sastry, S., Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter, International Journal of Control Automation and Systems, 7, 3, 419-428 (2009)
[24] Leonard, N. E., Control synthesis and adaptation for an underactuated autonomous underwater vehicle, IEEE Journal of Oceanic Engineering, 20, 3, 211-220 (1995)
[25] Leonard, N. E.; Krishnaprasad, P. S., Motion control of drift-free, left-invariant systems on lie groups, IEEE Transactions on Automatic Control, 40, 9, 1539-1554 (1995) · Zbl 0831.93027
[26] Lizarralde, F.; Wen, J. T., Attitude control without angular velocity measurement: a passivity approach, IEEE Transactions on Automatic Control, 41, 3, 468-472 (1996) · Zbl 0846.93065
[27] Markdahl, J.; Hu, X., Exact solutions to a class of feedback systems on SO(n), Automatica, 63, 138-147 (2016) · Zbl 1329.93110
[28] Markdahl, J.; Thunberg, J.; Gonçalves, J., Almost global consensus on the \(n\) -sphere, IEEE Transactions on Automatic Control, 63, 6, 1664-1675 (2018) · Zbl 1395.93446
[29] Murray, R. M.; Sastry, S., Nonholonomic motion planning: Steering using sinusoids, IEEE Transactions on Automatic Control, 38, 5, 700-716 (1993) · Zbl 0800.93840
[30] Raptis, I. A.; Valavanis, K. P.; Moreno, W. A., A novel nonlinear backstepping controller design for helicopters using the rotation matrix, IEEE Transactions on Control Systems Technology, 19, 2, 465-473 (2011)
[31] Ren, W. (2007). Synchronized multiple spacecraft rotations: A revisit in the context of consensus building. In Proc. Amer. Contr. Conf. (pp. 3174-3179).
[32] Ren, W., Distributed cooperative attitude synchronization and tracking for multiple rigid bodies, IEEE Transactions on Control Systems Technology, 18, 2, 383-392 (2010)
[33] Ren, W.; Beard, R. W.; Atkins, E. M., Information consensus in multivehicle cooperative control, IEEE Control Systems Magazine, 27, 2, 71-82 (2007)
[34] Rui, C.; Kolmanovsky, I. V.; McClamroch, N. H., Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels, IEEE Transactions on Automatic Control, 45, 8, 1455-1469 (2000) · Zbl 1048.70510
[35] Sarlette, A.; Sepulchre, R., Consensus optimization on manifolds, SIAM Journal on Control and Optimization, 48, 1, 56-76 (2009) · Zbl 1182.93010
[36] Sarlette, A.; Sepulchre, R.; Leonard, N. E., Autonomous rigid body attitude synchronization, Automatica, 45, 2, 572-577 (2009) · Zbl 1158.93372
[37] Scardovi, L., Leonard, N. E., & Sepulchre, R. (2007). Stabilization of collective motion in three dimensions: A consensus approach. In Proc. Conf. Dec. Contr. (pp. 2931-2936). New Orleans, LA.
[38] Shen, J.; McClamroch, N. H., Translational and rotational maneuvers of an underactuated space robot using prismatic actuators, International Journal of Robotics Research, 21, 5-6, 607-618 (2002)
[39] Shuster, M. D., A survey of attitude representations, Navigation, 8, 9, 439-517 (1993)
[40] Song, W.; Markdahl, J.; Zhang, S.; Hu, X.; Hong, Y., Intrinsic reduced attitude formation with ring inter-agent graph, Automatica, 85, 193-201 (2017) · Zbl 1375.93107
[41] Song, W.; Thunberg, J.; Hu, X.; Hong, Y., Distributed high-gain attitude synchronization using rotation vectors, Journal of Systems Science & Complexity, 28, 2, 289-304 (2015) · Zbl 1317.93020
[42] Thunberg, J.; Markdahl, J.; Bernard, F.; Goncalves, J., A lifting method for analyzing distributed synchronization on the unit sphere, Automatica, 96, 253-258 (2018) · Zbl 1406.93033
[43] Thunberg, J.; Markdahl, J.; Gonçalves, J., Dynamic controllers for column synchronization of rotation matrices: A QR-factorization approach, Automatica, 93, 20-25 (2018) · Zbl 1400.93013
[44] Thunberg, J.; Song, W.; Hong, Y.; Hu, X., Distributed attitude synchronization using backstepping and sliding mode control, Control Theory and Technology, 12, 1, 48-55 (2014) · Zbl 1313.93009
[45] Thunberg, J.; Song, W.; Montijano, E.; Hong, Y.; Hu, X., Distributed attitude synchronization control of multi-agent systems with switching topologies, Automatica, 50, 3, 832-840 (2014) · Zbl 1298.93037
[46] Trinh, M. H.; Zelazo, D.; Ahn, H., Pointing consensus and bearing-based solutions to the fermat-weber location problem, IEEE Transactions on Automatic Control, 65, 6, 2339-2354 (2020) · Zbl 07256354
[47] Van Tran, Q.; Trinh, M. H.; Zelazo, D.; Mukherjee, D.; Ahn, H., Finite-time bearing-only formation control via distributed global orientation estimation, IEEE Transactions on Control of Network Systems, 6, 2, 702-712 (2019) · Zbl 07093932
[48] Walsh, G. C., Montgomery, R., & Sastry, S. (1994). Orientation control of the dynamic satellite. In Proc. Amer. Contr. Conf., Vol. 1 (pp. 138-142). Baltimore, MD.
[49] Wang, S., Ghasemi, A. H., Evans, J. L., & Seigler, T. M. (2015). Orientation control using oscillating momentum wheels. In Proc. Dyn. Sys. Contr. Conf., V001T06A007.
[50] Wang, P. K.C.; Hadaegh, F. Y.; Lau, K., Synchronized formation rotation and attitude control of multiple free-flying spacecraft, Journal of Guidance, Control, and Dynamics, 22, 1, 28-35 (1999)
[51] Wang, S.; Hoagg, J. B.; Seigler, T. M., Orientation control on SO(3) with piecewise sinusoids, Automatica, 100, 114-122 (2019) · Zbl 1411.93095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.