×

zbMATH — the first resource for mathematics

The finitary content of sunny nonexpansive retractions. (English) Zbl 07266076
MSC:
47H06 Nonlinear accretive operators, dissipative operators, etc.
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
03F10 Functionals in proof theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aleyner, A. and Reich, S., An explicit construction of sunny nonexpansive retractions in Banach spaces, Fixed Point Theory Appl.2005(3) (2005) 295-305. · Zbl 1096.47055
[2] Aleyner, A. and Reich, S., A note on explicit iterative constructions of sunny nonexpansive retractions in Banach spaces, J. Nonlinear Convex Anal.6 (2005) 525-533. · Zbl 1097.47048
[3] Aleyner, A. and Reich, S., Implicit and explicit constructions of sunny nonexpansive retractions in Banach spaces, J. Math. Appl.29 (2007) 5-16. · Zbl 1173.47033
[4] Aoyama, K. and Toyoda, M., Approximation of zeros of accretive operators in a Banach space, Israel J. Math.220(2) (2017) 803-816. · Zbl 06788704
[5] Bačák, M. and Kohlenbach, U., On proximal mappings with Young functions in uniformly convex Banach spaces, J. Convex Anal.25 (2018) 1291-1318. · Zbl 1410.46005
[6] Baillon, J.-B., Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sèr. A-B280 (1975) 1511-1514. · Zbl 0307.47006
[7] P. Bénilan, Equations d’évolution dans un espace de Banach quelconque et applications, Thèse, Orsay (1972). · Zbl 0246.47068
[8] Browder, F. E., Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer. Math. Soc.73 (1967) 875-882. · Zbl 0176.45302
[9] Browder, F. E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Ration. Mech. Anal.24 (1967) 82-90. · Zbl 0148.13601
[10] Browder, F. E. and Petryshyn, W. V., Constructions of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl.20 (1967) 197-228. · Zbl 0153.45701
[11] Bruck, R. E., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc.76 (1970) 384-386. · Zbl 0224.47034
[12] Bruck, R. E., Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc.179 (1973) 251-262. · Zbl 0265.47043
[13] Bruck, R. E., Nonexpansive projections on subsets of Banach spaces, Pacific J. Math.47 (1973) 341-355. · Zbl 0274.47030
[14] Bruck, R. E., A characterization of Hilbert space, Proc. Amer. Math. Soc.43 (1974) 173-175. · Zbl 0306.46027
[15] Bruck, R. E., A strongly convergent iterative solution of \(0\inU(x)\) for a maximal monotone operator \(U\) in Hilbert space, J. Math. Anal. Appl.48 (1974) 114-126. · Zbl 0288.47048
[16] Bruck, R. E., Kirk, W. A. and Reich, S., Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces, Nonlinear Anal.6(2) (1982) 151-155. · Zbl 0485.47040
[17] Bruck, R. E. and Reich, S., Accretive operators, Banach limits, and dual ergodic theorems, Bull. Acad. Polon. Sci. Sér. Sci. Math.29(11-12) (1981) 585-589. · Zbl 0492.47030
[18] Chidume, C. E. and Zegeye, H., Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc.132 (2004) 831-840. · Zbl 1051.47041
[19] Clarkson, J. A., Uniformly convex spaces, Trans. Amer. Math. Soc.40(3) (1936) 415-420.
[20] Day, M., Uniform convexity in factor and conjugate spaces, Ann. of Math. (2)45(2) (1944) 375-385. · Zbl 0063.01058
[21] Domínguez-Benavides, T., López-Acedo, G. and Xu, H.-K., Construction of sunny nonexpansive retractions in Banach spaces, Bull. Austral. Math. Soc.66(1) (2002) 9-16. · Zbl 1017.47037
[22] Edelstein, M., The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc.78 (1972) 206-208. · Zbl 0231.47029
[23] P. Engrácia, Proof-theoretical studies on the bounded functional interpretation, Ph.D. thesis, Universidade de Lisboa (2009); http://hdl.handle.net/10451/1626.
[24] Ferreira, F., Leuştean, L. and Pinto, P., On the removal of weak compactness arguments in proof mining, Adv. Math.354 (2019) 106728, 55 pp. · Zbl 1446.03100
[25] Ferreira, F. and Oliva, P., Bounded functional interpretation, Ann. Pure Appl. Logic135 (2005) 73-112. · Zbl 1095.03060
[26] Genel, A. and Lindenstrauss, J., An example concerning fixed points, Israel J. Math.22 (1975) 81-86. · Zbl 0314.47031
[27] Gerhardy, P. and Kohlenbach, U., General logical metatheorems for functional analysis, Trans. Amer. Math. Soc.360 (2008) 2615-2660. · Zbl 1130.03036
[28] Giles, J. R., Classes of semi-inner-product spaces, Trans. Amer. Math. Soc.129 (1967) 436-446. · Zbl 0157.20103
[29] Gödel, K., Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Dialectica12 (1958) 280-287. · Zbl 0090.01003
[30] Goebel, K. and Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, , Vol. 83 (Marcel Dekker, New York, 1984).
[31] Günzel, D. and Kohlenbach, U., Logical metatheorems for abstract spaces axiomatized in positive bounded logic, Adv. Math.290 (2016) 503-551. · Zbl 1402.03078
[32] Gustafson, K., Stability inequalities for semimonotonically perturbed nonhomogeneous boundary problems, SIAM J. Appl. Math.15(2) (1967) 368-391. · Zbl 0152.11004
[33] Halpern, B., Fixed points of nonexpanding maps, Bull. Amer. Math. Soc.73 (1967) 957-961. · Zbl 0177.19101
[34] Hilbert, D., Über das Unendliche, Math. Ann.95(1) (1926) 161-190. · JFM 51.0044.02
[35] Howard, W. A., Hereditarily majorizable functionals of finite type, in Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, ed. Troelstra, A. S., , Vol. 344 (Springer, Berlin, 1973), pp. 454-461.
[36] Kohlenbach, U., Arithmetizing proofs in analysis, in Logic Colloquium ’96, eds. Larrazabal, J. M., Lascar, D. and Mints, G., , Vol. 12 (Springer, Berlin, 1998), pp. 115-158. · Zbl 0919.03046
[37] Kohlenbach, U., On the arithmetical content of restricted forms of comprehension, choice and general uniform boundedness, Ann. Pure Appl. Logic95(1-3) (1998) 257-285. · Zbl 0945.03088
[38] Kohlenbach, U., Things that can and things that cannot be done in PRA, Ann. Pure Appl. Logic102 (2000) 223-245. · Zbl 0958.03039
[39] Kohlenbach, U., Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc.357 (2005) 89-128. · Zbl 1079.03046
[40] Kohlenbach, U., Applied Proof Theory: Proof Interpretations and Their use in Mathematics, (Springer, Berlin, 2008). · Zbl 1158.03002
[41] Kohlenbach, U., On quantitative versions of theorems due to F. E. Browder and R. Wittmann, Adv. Math.226 (2011) 2764-2795. · Zbl 1223.03041
[42] Kohlenbach, U., Recent progress in proof mining in nonlinear analysis, IFCoLog J. Logics Appl.10 (2017) 3357-3406.
[43] Kohlenbach, U., Proof-theoretic methods in nonlinear analysis, in Proc. Int. Congr. Mathematicians 2018 (ICM 2018), eds. Sirakov, B., Ney de Souza, P. and Viana, M., Vol. 2 (World Scientific, Singapore, 2019), pp. 61-82. · Zbl 1445.03062
[44] U. Kohlenbach, Quantitative analysis of a Halpern-type Proximal Point Algorithm for accretive operators in Banach spaces, submitted.
[45] U. Kohlenbach and L. Leusteaņ, Effective metastability of Halpern iterates in CAT(0) spaces, Adv. Math.231 (2012) 2526-2556; Addendum 250 (2014) 650-651. · Zbl 1284.47044
[46] Kohlenbach, U. and Leuştean, L., On the computational content of convergence proofs via Banach limits, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.370(1971) (2012) 3449-3463. · Zbl 1329.03094
[47] Kohlenbach, U. and Safarik, P., Fluctuations, effective learnability and metastability in analysis, Ann. Pure Appl. Log.165 (2014) 266-304. · Zbl 1319.03062
[48] Körnlein, D., Quantitative results for Halpern iterations of nonexpansive mappings, J. Math. Anal. Appl.428(2) (2015) 1161-1172. · Zbl 1316.47055
[49] Körnlein, D. and Kohlenbach, U., Rate of metastability for Bruck’s iteration of pseudocontractive mappings in Hilbert space, Numer. Funct. Anal. Optim.35 (2014) 20-31. · Zbl 1348.47060
[50] Kreisel, G., On the interpretation of non-finitist proofs, part I, J. Symbolic Logic16 (1951) 241-267. · Zbl 0044.00302
[51] Kreisel, G., On the interpretation of non-finitist proofs, part II: Interpretation of number theory, applications, J. Symbolic Logic17 (1952) 43-58. · Zbl 0046.00701
[52] Leuştean, L. and Nicolae, A., Effective results on nonlinear ergodic averages in CAT \(( \kappa )\) spaces, Ergodic Theory Dynam. Systems36 (2016) 2580-2601. · Zbl 1362.37015
[53] Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces II: Function Spaces (Springer-Verlag, Berlin, 1979). · Zbl 0403.46022
[54] Martin, R. H., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc.179 (1973) 399-414. · Zbl 0293.34092
[55] Morales, C. H., Strong convergence theorems for pseudo-contractive mappings in Banach space, Houston J. Math.16 (1990) 549-558. · Zbl 0728.47037
[56] Neumann, E., Computational problems in metric fixed point theory and their Weihrauch degrees, Log. Method. Comput. Sci.11 (2015), 4:20, 44 pp. · Zbl 1351.03054
[57] Parsons, C., On a number theoretic choice schema and its relation to induction, in Intuitionism and Proof Theory, eds. Kino, A., Myhill, J. and Vesley, R. E., , Vol. 60 (North Holland, Amsterdam, 1970), pp. 459-473. · Zbl 0202.01202
[58] Parsons, C., On \(n\)-quantifier induction, J. Symbolic Logic37 (1972) 466-482. · Zbl 0264.02027
[59] Petryshyn, W. V., A characterization of strict convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal.6 (1970) 282-291. · Zbl 0199.44004
[60] Reich, S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl.75 (1980) 287-292. · Zbl 0437.47047
[61] Reich, S., Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal.36(2) (1980) 147-168. · Zbl 0437.47048
[62] Shioji, N. and Takahashi, W., Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc.125 (1997) 3641-3645. · Zbl 0888.47034
[63] Spector, C., Provably recursive functionals of analysis: A consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics, in Recursive Function Theory, ed. Dekker, J. C. E., , Vol. 5 (American Mathematical Society, Providence, RI, 1962), pp. 1-27. · Zbl 0143.25502
[64] Takahashi, W. and Ueda, Y., On Reich’s strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl.104(2) (1984) 546-553. · Zbl 0599.47084
[65] Tao, T., Soft analysis, hard analysis, and the finite convergence principle, in Structure and Randomness: Pages from Year One of a Mathematical Blog (American Mathematical Society, Providence, RI, 2008), 298 pp.
[66] Tao, T., Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems28 (2008) 657-688. · Zbl 1181.37004
[67] Wittmann, R., Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel)58 (1992) 486-491. · Zbl 0797.47036
[68] Xu, H.-K., Inequalities in Banach spaces with applications, Nonlinear Anal.16 (1991) 1127-1138. · Zbl 0757.46033
[69] Xu, Z.-B. and Roach, G. F., Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl.157(1) (1991) 189-210. · Zbl 0757.46034
[70] Zălinescu, C., On uniformly convex functions, J. Math. Anal. Appl.95(2) (1983) 344-374. · Zbl 0519.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.