# zbMATH — the first resource for mathematics

A discrete weighted Markov-Bernstein inequality for sequences and polynomials. (English) Zbl 07265514
Authors’ abstract: “For parameters $$c \in(0, 1)$$ and $$\beta > 0$$, let $$\ell_2(c, \beta)$$ be the Hilbert space of real functions defined on $$\mathbb{N}$$ (i.e., real sequences), for which $\| f \|_{c , \beta}^2 : = \sum\limits_{k = 0}^\infty \frac{ ( \beta )_k}{ k !} c^k [ f ( k ) ]^2 < \infty .$ We study the best (i.e., the smallest possible) constant $$\gamma_n(c, \beta)$$ in the discrete Markov-Bernstein inequality $\| {\Delta} P \|_{c , \beta} \leq \gamma_n(c, \beta) \| P \|_{c , \beta}, \;\;\; P \in \mathcal{P}_n,$ where $$\mathcal{P}_n$$ is the set of real algebraic polynomials of degree at most $$n$$ and $${\Delta} f(x) : = f(x + 1) - f(x)$$.
We prove that
(i)
$$\gamma_n(c, 1) \leq 1 + \frac{ 1}{ \sqrt{ c}}$$ for every $$n \in \mathbb{N}$$ and $$\lim\limits_{n \to \infty} \gamma_n(c, 1) = 1 + \frac{ 1}{ \sqrt{ c}}$$;
(ii)
For every fixed $$c \in(0, 1), \gamma_n(c, \beta)$$ is a monotonically decreasing function of $$\beta$$ in $$(0, \infty)$$;
(iii)
For every fixed $$c \in(0, 1)$$ and $$\beta > 0$$, the best Markov-Bernstein constants $$\gamma_n(c, \beta)$$ are bounded uniformly with respect to $$n$$.
A similar Markov-Bernstein inequality is proved for sequences, and a relation between the best Markov-Bernstein constants $$\gamma_n(c, \beta)$$ and the smallest eigenvalues of certain explicitly given Jacobi matrices is established.”
Added by reviewer: There is an interesting section “Comments” where the authors indicate several related unsolved problems and discuss directions for further investigations.
##### MSC:
 41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities) 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text:
##### References:
  Aleksov, D.; Nikolov, G., Markov $$L_2$$ inequality with the Gegenbauer weight, J. Approx. Theory, 225, 224-241 (2018) · Zbl 1380.41006  Aleksov, D.; Nikolov, G.; Shadrin, A., On the Markov inequality in the $$L_2$$ norm with the Gegenbauer weight, J. Approx. Theory, 208, 9-20 (2016) · Zbl 06588614  Arestov, V. V., On integral inequalities for trigonometric polynomials and their derivatives, Math. USSR, Izv., 18, 1-17 (1982) · Zbl 0517.42001  Boas, R. B., Entire Functions (1954), Academic Press: Academic Press New York  Carleson, L., Bernstein’s approximation problem, Proc. Am. Math. Soc., 2, 953-961 (1951) · Zbl 0044.07002  Dörfler, P., New inequalities of Markov type, SIAM J. Math. Anal., 18, 490-494 (1987) · Zbl 0612.41020  Dörfler, P., Über die bestmögliche Konstante in Markov-Ungleichungen mit Laguerre Gewicht, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 200, 13-20 (1991) · Zbl 0748.41009  Dörfler, P., Asymptotics of the best constant in a certain Markov-type inequality, J. Approx. Theory, 114, 84-97 (2002) · Zbl 1120.41015  Dzrbasjan, M. M., On metrical criteria of completeness of systems of polynomials in unbounded domains, Dokl. Akad. Nauk Armen. SSR, 7, 3-10 (1947)  Erdelyi, T., Notes on inequalities with doubling weights, J. Approx. Theory, 100, 60-72 (1999) · Zbl 0985.41009  Feynman, R. P., Forces in molecules, Phys. Rev., 56, 340-343 (1939) · Zbl 0022.42302  Freud, G., Orthogonal Polynomials (1971), Akadémiai Kiadó/Pergamon Press: Akadémiai Kiadó/Pergamon Press Budapest · Zbl 0226.33014  Ganzburg, M. I., Limit Theorems for Polynomial Approximation with Exponential Weights, Mem. Amer. Math. Soc., vol. 897 (2008) · Zbl 1142.30011  Hellmann, H. G.A., Zur rolle der kinetischen Elektronenenergie für die zweischen-atomaren Kräfte, Z. Phys., 85, 180-190 (1933) · JFM 59.1554.03  Hille, E.; Szegő, G.; Tamarkin, J. D., On some generalizations of a theorem of A. Markoff, Duke Math. J., 3, 729-739 (1937) · JFM 63.0314.03  Ismail, M. E.H., The variation of zeros of certain orthogonal polynomials, Adv. Appl. Math., 8, 111-118 (1987) · Zbl 0628.33001  Ismail, M. E.H., Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and Its Applications, vol. 98 (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1082.42016  Ismail, M. E.H.; Muldoon, M. E., A discrete approach to monotonicity of zeros of orthogonal polynomials, Trans. Am. Math. Soc., 323, 65-78 (1991) · Zbl 0718.33004  Ismail, M. E.H.; Zhang, R., On the Hellmann-Feynman theorem and the variation of zeros of certain special functions, Adv. Appl. Math., 9, 439-446 (1988) · Zbl 0684.33004  Izumi, S.; Kawata, T., Quasi-analytic class and closure of $$\{ t^n \}$$ in the interval $$(- \infty, \infty))$$, Tohoku Math. J., 43, 267-273 (1937) · JFM 63.0197.03  Koekoek, R.; Swarttouw, R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue (1998), Delft University of Technology, Report 98-17  Koosis, P., The Logarithmic Integral I (1988), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0665.30038  Lubinsky, D., A survey of weighted polynomial approximation with exponential weights, Surv. Approx. Theory, 3, 1-105 (2007) · Zbl 1181.41004  Lubinsky, D., Weighted Markov-Bernstein inequalities for entire functions of exponential type, Publ. Inst. Math. (Beograd) (N.S.), 96, 110, 181-192 (2014) · Zbl 1349.42054  Markov, A. A., On a question of D.I. Mendeleev, Zap. Petersb. Akad. Nauk, 62, 1-24 (1889), (in Russian). Available also at:  Mastroianni, G.; Totik, V., Weighted polynomial inequalities with doubling and $$A_\infty$$ weights, Constr. Approx., 16, 37-71 (2000) · Zbl 0956.42001  Nevai, P.; The anonymous referee, The Bernstein inequality and the Schur inequalities are equivalent, J. Approx. Theory, 182, 103-109 (2014) · Zbl 1290.41007  Nikolov, G., Markov-type inequalities in the $$L_2$$-norms induced by the Tchebycheff weights, Arch. Inequal. Appl., 1, 361-376 (2003) · Zbl 1062.41010  Nikolov, G.; Shadrin, A., Markov $$L_2$$-inequality with the Laguerre weight, (Ivanov, K.; Nikolov, G.; Uluchev, R., Constructive Theory of Functions, Sozopol 2018 (2018), Professor Marin Drinov Academic Publishing House: Professor Marin Drinov Academic Publishing House Sofia), 207-221 · Zbl 1445.41004  Nikolov, G.; Shadrin, A., On the Markov inequality in the $$L_2$$-norm with the Gegenbauer weight, Constr. Approx., 49, 1, 1-27 (2019) · Zbl 1443.41008  Rahman, Q. I.; Schmeisser, G., $$L^p$$ inequalities for entire functions of exponential type, Trans. Am. Math. Soc., 320, 91-103 (1990) · Zbl 0699.30022  Riesz, M., Formule d’interpolation pour la derivée d’un polynome trigonométrique, C. R. Math. Acad. Sci. Paris, 158, 1152-1154 (1914) · JFM 45.0404.02  Riesz, M., Sur le problème des moments et le théorème de Parseval correspondent, Acta Litt. ac Scient. Univ. Hung., 1, 209-225 (1922-23) · JFM 49.0708.02  Schmidt, E., Über die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum, Math. Anal., 119, 165-204 (1944) · Zbl 0028.39402  Turán, P., Remark on a theorem of Ehrhard Schmidt, Mathematica (Cluj), 2, 373-378 (1960) · Zbl 0101.04702  Wall, H. S.; Wetzel, M., Quadratic forms and convergence regions for continued fractions, Duke Math. J., 11, 89-102 (1944) · Zbl 0060.16504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.