zbMATH — the first resource for mathematics

Method for experimental data processing concerning chemical reaction rates in low-atomic gases. (English. Russian original) Zbl 07264989
Comput. Math. Math. Phys. 60, No. 7, 1199-1207 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 7, 1239-1247 (2020).
Summary: A new method for joint processing of experimental data from various laboratories based on their approximation by the generalized Arrhenius law is proposed. The method is based on the construction of a system of functions that are orthogonal on a given set of points with arbitrary weights. As a result, the confidence intervals of the approximation coefficients can be estimated and the number of terms required for the approximation can be correctly determined. The performance of the method is demonstrated as applied to reactions of hydrogen combustion in air that are important at \(T < 1000\) K. High accuracy of reaction rate approximation is achieved.
80A30 Chemical kinetics in thermodynamics and heat transfer
80A25 Combustion
80-05 Experimental work for problems pertaining to classical thermodynamics
86A08 Climate science and climate modeling
GRI-Mech 3.0
Full Text: DOI
[1] Stocker, T. F.; Qin, D.; Plattner, G.-K., IPCC, 2013: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013), Cambridge, UK: Cambridge University Press, Cambridge, UK
[2] Mailler, S.; Menut, L.; Khvorostyanov, D., CHIMERE 2013: A model for regional atmospheric composition modeling, GeoSci. Model Dev., 10, 2397-2423 (2017)
[3] Menut, L.; Bessagnet, B.; Khvorostyanov, D., CHIMERE-2017: From urban to hemispheric chemistry-transport modeling, GeoSci. Model Dev., 6, 981-1028 (2013)
[4] Appel, K. W.; Napelenok, S. L.; Foley, K. M., Description and evaluation of the community multiscale air quality (CMAQ) modeling system version 5.1, GeoSci. Model Dev., 10, 1703-1732 (2017)
[5] F. Wagner and W. Schoepp, “Comparison of the RAINS emission control cost curves for air pollutants with emission control costs computed by the GAINS model,” IIASA Interim Report IR-07-0082007 (Laxenburg, Austria, 2007). http://pure.iiasa.ac.at/id/eprint/8447/
[6] Prather, M.; Ehhalt, D.; Dentener, F., Climate Change 2001: The Scientific Basis (2001), Cambridge, UK: Cambridge University Press, Cambridge, UK
[7] Melius, C. F., Chemistry and Physics of Energetic Materials (1990), Dordrecht: Kluwer Academic, Dordrecht
[8] Harris, F. E., Quantum chemistry, Ann. Rev. Phys. Chem., 23, 415-438 (1972)
[9] Murrell, J. N.; Carter, S.; Farantos, S. C., Molecular Potential Energy Functions (1984), New York: Wiley, New York
[10] Robinson, P. G.; Holbrook, K. A., Monomolecular Reactions (1972), London: Wiley-Interscience, London
[11] Kondrat’ev, V. N.; Nikitin, E. E., Kinetics and Mechanism of Gas-Phase Reactions (1974), Moscow: Nauka, Moscow
[12] Davidson, D. F.; Hanson, R. K., Interpreting shock tube ignition data, Int. J. Chem. Kinet., 36, 510-523 (2004)
[13] Barton, S. C.; Dove, J. E., Mass spectrometric studies of chemical reactions in shock waves: The thermal decomposition of nitrous oxide, Can. J. Chem., 47, 521 (1969)
[14] Frank, P.; Just, Th., High Temperature Reaction Rate for H + O_2 → OH + O and OH + H_2 → H_2O + H, Ber. Bunsenges. Phys. Chem., 89, 181 (1985)
[15] F. Westley, Tables of Recommended Rate Constants for Chemical Reactions Occurring in Combustion (National Standard Reference Data Series, NSRDS-NB, 67, 1980.
[16] NIST Chemical Kinetics Database: Standard Reference Database 17-2Q98 (NIST, Gaithersburg, MD, US, 1998). http://kinetics.nist.gov/kinetics/
[17] Burkholder, J. B.; Sander, S. P.; Abbatt, J. P. D., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation, No. 18 (2015), Pasadena: Jet Propulsion Laboratory, Pasadena
[18] G. P. Smith, D. M. Golden, and M. Frenklach, Berkeley University of California, Gas Research Institute, GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/
[19] Baulch, D. L.; Bowman, C. T.; Cobos, C. J., Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data, 34, 757 (2005)
[20] L. B. Ibragimova, G. D. Smekhov, and O. P. Shatalov, “Comparative analysis of chemical reaction rates describing combustion of hydrogen oxygen mixtures,” Fiz.-Khim. Kinetics Gas. Din. 8, 1-25 (2009). www.chemphys.edu.ru/pdf/2009-06-29-01.pdf
[21] Mass, U.; Warnatz, J., Ignition processes in hydrogen-oxygen mixtures, Combust. Flame, 74, 53 (1988)
[22] Miller, J. A.; Bowman, C. T., Mechanism and modeling of nitrogen chemistry in combustion, Progr. Energy Combust. Sci., 15, 287-338 (1989)
[23] Klippenstein, S. J.; Harding, L. B.; Ruscic, B., Thermal decomposition of NH_2OH and subsequent reactions: Ab initio transition state theory and reflected shock tube experiments, J. Phys. Chem. A, 113, 10241 (2009)
[24] E. Yu. Dnestrovskaya and N. N. Kalitkin, Preprint No. 181, IPM im. M.V. Keldysha AN SSSR (Keldysh Inst. of Applied Mathematics, USSR Academy of Sciences Moscow, 1987).
[25] Baber, S. C.; Dean, A. M., N_2O dissociation behind reflected shock waves, Int. J. Chem. Kinet., 7, 381 (1975)
[26] Balakhnine, V. P.; Vandooren, J.; Van Tiggelen, P. J., Reaction mechanism and rate constants in lean hydrogen-nitrous oxide flames, Combust. Flame, 28, 165 (1977)
[27] Dean, A. M., Shock tube studies of the N_2O/Ar and N_2O/H_2/Ar systems, Int. J. Chem. Kinet., 8, 459 (1976)
[28] Endo, H.; Glaenzer, K.; Troe, J., Shock wave study of collisional energy transfer in the dissociation of nitrogen dioxide, nitrosyl chloride, ozone, and nitrous oxide, J. Phys. Chem., 83, 2083 (1979)
[29] Fishburne, E. S.; Edse, R., Shock-tube study of nitrous oxide decomposition, J. Chem. Phys., 41, 1297 (1964)
[30] Fujii, N.; Uchida, S.; Sato, H., High-temperature reaction of NH_3-N_2O system in shock waves, Bull. Chem. Soc. Jpn., 59, 3431 (1986)
[31] Fujii, N.; Sagawai, S.; Sato, T., Study of the thermal dissociation of N_2O and CO_2 using O(_3P) atomic resonance absorption spectroscopy, J. Phys. Chem., 93, 5474 (1989)
[32] Javoy, S.; Mevel, R.; Paillard, C. E., A study of N_2O decomposition rate constant at high temperature: Application to the reduction of nitrous oxide by hydrogen, Int. J. Chem. Kinet., 41, 357 (2009)
[33] Jost, W.; Michel, K. W.; Troe, J., Untersuchung des Thermischen Zerfalls von N_2O in Stoßwellen, Z. Naturforsch. A: Phys. Sci., 19, 59 (1964)
[34] Lipkea, W. H.; Milks, D.; Matula, R. A., Nitrous oxide decomposition and its reaction with atomic oxygen, Combust. Sci. Technol., 6, 257 (1973)
[35] Michael, J. V.; Lim, K. P., Rate constants for the N_2O reaction system: Thermal decomposition of N_2O; N + NO → N_2 + O; and implications for O + N_2 → NO + N, J. Chem. Phys., 97, 3228 (1992)
[36] Modica, A. P., Kinetics of the nitrous oxide decomposition by mass spectrometry: A study to evaluate gas-sampling methods behind reflected shock waves, J. Phys. Chem., 69, 2111 (1965)
[37] Monat, J. P.; Hanson, R. K.; Kruger, C. H., Kinetics of nitrous oxide decomposition, Combust. Sci. Technol., 16, 21 (1977)
[38] Rohrig, M.; Petersen, E. L.; Davidson, D. F., The pressure dependence of the thermal decomposition of N_2O, Int. J. Chem. Kinet., 28, 599 (1996)
[39] Rohrig, M.; Petersen, E. L.; Davidson, D. F., A shock tube study of the pyrolysis of NO_2, Int. J. Chem. Kinet., 29, 484 (1997)
[40] Ross, S. K.; Sutherland, J. W.; Kuo, S.-C., Rate constants for the thermal dissociation of N_2O and the O(_3P) + N_2O reaction, J. Phys. Chem. A, 101, 1104 (1997)
[41] N. N. Kalitkin, I. A. Kozlitin, and A. A. Belov, TEFIS Database (Inst. Prikl. Mat. im. M.V. Keldysha Ross. Akad. Nauk, Moscow). http://tefis.ru
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.