×

Predicting COVID-19 spread in the face of control measures in West Africa. (English) Zbl 1453.92319

Summary: The novel coronavirus (COVID-19) pandemic is causing devastating demographic, social, and economic damage globally. Understanding current patterns of the pandemic spread and forecasting its long-term trajectory is essential in guiding policies aimed at curtailing the pandemic. This is particularly important in regions with weak economies and fragile health care systems such as West Africa. We formulate and use a deterministic compartmental model to (i) assess the current patterns of COVID-19 spread in West Africa, (ii) evaluate the impact of currently implemented control measures, and (iii) predict the future course of the pandemic with and without currently implemented and additional control measures in West Africa. An analytical expression for the threshold level of control measures (involving a reduction in the effective contact rate) required to curtail the pandemic is computed. Considering currently applied health control measures, numerical simulations of the model using baseline parameter values estimated from West African COVID-19 data project a 67% reduction in the daily number of cases when the epidemic attains its peak. More reduction in the number of cases will be achieved if additional public health control measures that result in a reduction in the effective contact rate are implemented. We found out that disease elimination is difficult when more asymptomatic individuals contribute in transmission or are not identified and isolated in a timely manner. However, maintaining a baseline level of asymptomatic isolation and a low transmission rate will lead to a significant reduction in the number of daily cases when the pandemic peaks. For example, at the baseline level of asymptomatic isolation, at least a 46% reduction in the transmission rate is required for disease elimination. Additionally, disease elimination is possible if asymptomatic individuals are identified and isolated within 5 days (after the incubation period). Combining two or more measures is better for disease control, e.g., if asymptomatic cases are contact traced or identified and isolated in less than 8 days, only about 29% reduction in the disease transmission rate is required for disease elimination. Furthermore, we showed that the currently implemented measures triggered a 33% reduction in the time-dependent effective reproduction number between February 28 and June 26, 2020. We conclude that curtailing the COVID-19 pandemic burden significantly in West Africa requires more control measures than those that have already been implemented, as well as more mass testing and contact tracing in order to identify and isolate asymptomatic individuals early.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] World Health Organization, Coronavirus disease (COVID-19) technical guidance, WHO (2020), https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance. (Accessed 4 March 2020)
[2] World Health Organization, Emergencies, preparedness, response. Pneumonia of unknown origin - China, disease outbreak news (2020), https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/. (Accessed 5 March 2020)
[3] Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K. S.; Lau, E. H.; Wong, J. Y., Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia, New Engl. J. Med. (2020)
[4] Dong, E.; Du, H.; Gardner, L., An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis. (2020)
[5] World Health Organization, Coronavirus disease (COVID-2019) situation reports 159, WHO (2020), https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200627-covid-19-sitrep-159.pdf?sfvrsn=93e027f6_2 (Accessed 27 June 2020)
[6] Center for Disease Control Prevention, Coronavirus disease 2019 (COVID-19), National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases, 2020. https://www.cdc.gov/coronavirus/2019-ncov/index.html. (Accessed 4 March 2020).
[7] Worldometer, Coronavirus data (2020), https://www.worldometers.info/coronavirus/#countries (Accessed 27 March 2020)
[8] Africa Center for Strategic Studies, Mapping risk factors for the spread of COVID-19 in africa (2020), https://africacenter.org/spotlight/mapping-risk-factors-spread-covid-19-africa/. (Accessed 9 April 2020)
[9] Martinez-Alvarez, M.; Jarde, A.; Usuf, E.; Brotherton, H.; Bittaye, M.; Samateh, A. L.; Antonio, M.; Vives-Tomas, J.; D’Alessandro, U.; Roca, A., COVID-19 pandemic in west africa. lancet glob health (2020), https://doi.org/10.1016/S2214-109X(20)30123-6
[10] Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.-Y.; Chen, L.; Wang, M., Presumed asymptomatic carrier transmission of covid-19, JAMA, 323, 14, 1406-1407 (2020)
[11] Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R., Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges, Int. J. Antimicro. Ag., Article 105924 pp. (2020)
[12] World Health Organization (WHO), Global health observatory data (2020), https://apps.who.int/gho/data/node.main.HWFGRP_0020?lang=en. (Accessed 10 April 2020)
[13] West African Health Organization, West African Herbal Pharmacopoeia. Kumasi, Ghana, 2013, 260 pages.
[14] World Health Organization, et al. Global Spending on Health: A World in Transition. WHO/HIS/HGF/HFWorkingPaper/19.4, 2019.
[15] World Health Organization (WHO), Health Situation Analysis in the African Region: Atlas of Health Statistics, 2011, 2011.
[16] Prescott, J. B.; Marzi, A.; Safronetz, D.; Robertson, S. J.; Feldmann, H.; Best, S. M., Immunobiology of Ebola and Lassa virus infections, Nat. Rev. Immunol., 17, 3, 195-207 (2017)
[17] Ngonghala, C. N.; Iboi, E.; Eikenberry, S.; Scotch, M.; MacIntyre, C. R.; Bonds, M. H.; Gumel, A. B., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus, Math. Biosci., Article 108364 pp. (2020) · Zbl 1448.92135
[18] Ferguson, N.; Laydon, D.; Nedjati, G. G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, Z. U.L. M.A.; Cucunuba Perez, G.; Cuomo-Dannenburg, A.; Dighe, A., Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand (2020)
[19] Anderson, R. M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T. D., How will country-based mitigation measures influence the course of the COVID 19 epidemic?, Lancet, 395, 10228, 931-934 (2020)
[20] Zhou, X.; Ma, X.; Hong, N.; Su, L.; Ma, Y.; He, J.; Jiang, H.; Liu, C.; Shan, G.; Zhu, W., Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model, medRxiv (2020)
[21] De Leon, U. A.P.; Perez, A. G.; Avila-Vales, E., A data driven analysis and forecast of an SEIARD epidemic model for COVID-19 in Mexico (2020), arXiv, arXiv:2004.08288
[22] Roda, W. C.; Varughese, M. B.; Han, D.; Li, M. Y., Why is it difficult to accurately predict the COVID-19 epidemic?, Infect. Dis. Model. (2020)
[23] Eikenberry, S. E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A. B., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model., 2020 (2020)
[24] COVID, I.; Murray, C. J., Forecasting the impact of the first wave of the COVID-19 pandemic on hospital demand and deaths for the USA and european economic area countries, medRxiv (2020), https://www.medrxiv.org/content/10.1101/2020.04.21.20074732v1.full.pdf
[25] Otitoloju, A. A.; Okafor, I. P.; Fasona, M.; Bawa-Allah, K. A.; Isanbor, C.; Onyeka, C. S.; Folarin, O. S.; Adubi, T. O.; Sogbanmu, T. O.; Ogbeibu, A. E., COVID-19 pandemic: examining the faces of spatial differences in the morbidity and mortality in sub-Saharan Africa, Europe and USA, medRxiv (2020)
[26] Adegboye, O.; Adekunle, A. I.; Gayawan, E., Novel coronavirus in Nigeria: Epidemiological analysis of the first 45 days of the pandemic, medRxiv (2020)
[27] Achoki, T.; Alam, U.; Were, L.; Gebremedhin, T.; Senkubuge, F.; Lesego, A.; Lius, S.; Wamai, R.; Kinfu, Y., COVID-19pandemic in the african continent: forecasts of cumulative cases, new infections, and mortality, medRxiv (2020)
[28] Worldometers, Population data. https://www.worldometers.info/world-population/western-africa-population/ (Accessed 8 April 2020).
[29] World Bank, World Bank national accounts data and OECD National Accounts data files https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?most_recent_value_desc=fals. (Accessed 10 April 2020).
[30] Roser, M.; Ritchie, H.; Ortiz-Ospina, E.; Hasell, J., Coronavirus pandemic (COVID-19), our world in data (2020)
[31] Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; Wang, J., Clinical characteristics of 24 asymptomatic infections with COVID-19 screened amongclose contacts in nanjing, China. Sci. China Life Sci., 63, 5, 706-711 (2020)
[32] N.M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba, G. Cuomo-Dannenburg, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, London: Imperial College COVID-19 Response Team, March 16, 2020.
[33] Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application, Ann. Intern. Med., 172, 9, 577-582 (2020)
[34] Day, M., Covid-19: four fifths of cases are asymptomatic, China figures indicate, Br. Med. J., 369, m1375 (2020)
[35] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1-2, 29-48 (2002) · Zbl 1015.92036
[36] Dieckmann, U.; Metz, J.; Sabelis, M.; K. Sigmund, K., Adaptive dynamics of infectious diseases, (Pursuit of Virulence Management (2005), C.U.P: C.U.P New York)
[37] Arino, J.; Brauer, F.; Van Den Driessche, P.; Watmough, J.; Wu, J., A final size relation for epidemic models, Math. Biosci. Eng., 4, 2, 159 (2007) · Zbl 1123.92030
[38] Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J. M.; Ma, S.; James, L.; G. Gopalakrishna, A. S.; Chew, S. K.; Tan, C. C.; Samore, M. H.; Fisman, D., Transmission dynamics and control of severe acute respiratory syndrome, Science, 300, 5627, 1966-1970 (2003)
[39] Ngonghala, C. N.; Iboi, E. A.; Gumel, A. B., Could masks curtail the post-lockdown resurgence of COVID-19 in the US?, medRxiv (2020), https://www.medrxiv.org/content/10.1101/2020.07.05.20146951v3.full.pdf · Zbl 1453.92193
[40] Zhao, Z.; Li, X.; Liu, F.; Zhu, G.; Ma, C.; Wang, L., Prediction of the COVID-19 spread in african countries and implications for prevention and controls: A case study in South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya, Sci. Total Environ., Article 138959 pp. (2020)
[41] Gupta, M.; Mohanta, S. S.; Rao, A.; Parameswaran, G. G.; Agarwal, M.; Arora, M.; Mazumder, A.; Lohiya, A.; Behera, P.; Bansal, A.; Kumar, R.; Meena, V. P.; Tiwari, P.; Mohan, A.; Bhatnagar, S., Transmission dynamics of the COVID-19 epidemic in India and modelling optimal lockdown exit strategies, medRxiv (2020)
[42] Shim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, M.; G, M., Transmission potential and severity of COVID-19 in South Korea, Int. J. Infect. Dis. (2020)
[43] Kucharski, A. J.; Russell, T. W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R. M.; Davies, N., Early dynamicsof transmission and control of COVID-19: a mathematical modelling study, Lancet. Infect. Dis. (2020)
[44] Machicao, J. C., Monitoring the covid-19 pandemic in peru with highly uncertain data. gestio din amica lima, peru (2020), Published April 14th, 2020. https://www.researchgate.net/profile/Jose_Machicao/publication/340644468_Monitoring_the_Covid-19_pandemic_in_Peru_with_highly_uncertain_data/links/5e967be3a6fdcca789189e0c/Monitoring-the-Covid-19-pandemic-in-Peru-with-highly-uncertain-data.pdf
[45] Paintsil, E., COVID-19 threatens health systems in sub-saharan africa: the eye of the crocodile, J. Clin. Invest. (2020)
[46] Althaus, C. L., Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in west africa, PLoS Curr., 6 (2014)
[47] Dénes, A.; Gumel, A. B., Modeling the impact of quarantine during an outbreak of ebola virus disease, Infect. Dis. Model., 4, 12-27 (2019)
[48] Zhao, S.; Musa, S. S.; Fu, H.; He, D.; Qin, J., Large-scale lassa fever outbreaks in Nigeria: quantifying the association between disease reproduction number and local rainfall, Epidemiol. Infect., 148 (2020)
[49] Emery, J. C.; Russel, T. W.; Liu, Y.; Hellewell, J.; Pearson, C. A.; Knight, G. M.; Eggo, R. M.; Kucharski, A.; Funk, S.; Flasche, S.; Houben, R. M.G. J., The contribution of asymptomatic SARS-CoV-2 infections to transmission-a model-based analysis of the diamond princess outbreak, medRxiv (2020)
[50] Ganyani, T.; Kremer, C.; Chen, D.; Torneri, A.; Faes, C.; Wallinga, J.; Hens, N., Estimating the generation interval for COVID-19 based on symptom onset data, Eurosurveillance, 25, 17, 2000257 (2020)
[51] Nishiura, H.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Miyama, T.; Kinoshita, R., The rate of underascertainment of novel coronavirus (2019-nCoV) infection: estimation using japanese passengers data on evacuation flights, J. Clin. Med., 9, 2 (2020)
[52] Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368, 6491 (2020)
[53] Obabiyi, O. S.; Onifade, A. A., Mathematical model for lassa fever transmission dynamics with variable human and reservoir population, Int. J. Differ., 16, 1, 67-91 (2017)
[54] Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, N. I.; Jarvis, C. I.; Russell, T. W.; Munday, J. D.; Kucharski, A. J.; Edmunds, W. J.; Sun, F.; Flasche, S., Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Glob. Health, 8, 4, 488-496 (2020)
[55] Morawska, L.; Cao, J., Airborne transmission of SARS-CoV-2: the world should face the reality, Environ. Int., Article 105730 pp. (2020)
[56] Chang, S. L.; Harding, N.; Zachreson, C.; Cliff, O. M.; Prokopenko, M., Modelling transmission and control of the COVID-19 pandemic in Australia (2020), arXiv arXiv:2003.10218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.