zbMATH — the first resource for mathematics

Stability of traveling waves in a driven Frenkel-Kontorova model. (English) Zbl 07261650
Summary: In this work we revisit a classical problem of traveling waves in a damped Frenkel-Kontorova lattice driven by a constant external force. We compute these solutions as fixed points of a nonlinear map and obtain the corresponding kinetic relation between the driving force and the velocity of the wave for different values of the damping coefficient. We show that the kinetic curve can become non-monotone at small velocities, due to resonances with linear modes, and also at large velocities where the kinetic relation becomes multivalued. Exploring the spectral stability of the obtained waveforms, we identify, at the level of numerical accuracy of our computations, a precise criterion for instability of the traveling wave solutions: monotonically decreasing portions of the kinetic curve always bear an unstable eigendirection. We discuss why the validity of this criterion in the dissipative setting is a rather remarkable feature offering connections to the Hamiltonian variant of the model and of lattice traveling waves more generally. Our stability results are corroborated by direct numerical simulations which also reveal the possible outcomes of dynamical instabilities.
37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems
35C07 Traveling wave solutions
35Q51 Soliton equations
Full Text: DOI
[1] Frenkel, J.; Kontorova, T., On the theory of plastic deformation and twinning, Proc Z Sowj, 13, 1-10 (1938) · JFM 64.1422.02
[2] Braun, O. M.; Kivshar, Y. S., The Frenkel-Kontorova model: concepts, methods and applications, Texts and monographs in physics (2004), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1140.82001
[3] (Cuevas-Maraver, J.; Kevrekidis, P. G.; Williams, F. L., The sine-gordon model and its applications: From pendula and josephson junctions to gravity and high energy physics. Nonlinear systems and complexity (2013), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 1341.37046
[4] Peyrard, M.; Kruskal, M. D., Kink dynamics in the highly discrete sine-Gordon system, Phys D, 14, 88-102 (1984)
[5] Aigner, A. A.; Champneys, A. R.; Rothos, V. M., A new barrier to the existence of moving kinks in Frenkel-Kontorova lattices, Phys D, 186, 3, 148-170 (2003) · Zbl 1037.74026
[6] Atkinson, W.; Cabrera, N., Motion of a Frenkel-Kontorova dislocation in a one-dimensional crystal, Phys Rev A, 138, 3, 763-766 (1965)
[7] Carpio, A.; Bonilla, L. L., Oscillatory wave fronts in chains of coupled nonlinear oscillators, Phys Rev E, 67, 056621 (2003)
[8] Earmme, Y. Y.; Weiner, J. H., Dislocation dynamics in the modified Frenkel-Kontorova model, J Appl Phys, 48, 8, 3317-3331 (1977)
[9] Kresse, O., Lattice models of propagating defects (2002), University of Minnesota, Ph.d. thesis
[10] Kresse, O.; Truskinovsky, L., Mobility of lattice defects: discrete and continuum approaches, J Mech Phys Solids, 51, 1305-1332 (2003) · Zbl 1077.74512
[11] Kresse, O.; Truskinovsky, L., Prototypical lattice model of a moving defect: the role of environmental viscosity, Izvestiya Physics of the Solid Earth, 43, 63-66 (2007)
[12] Celli, V.; Flytzanis, N., Motion of a screw dislocation in a crystal, J Appl Phys, 41, 11, 4443-4447 (1970)
[13] Ishioka, S., Uniform motion of a screw dislocation in a lattice, J Phys Soc Jpn, 30, 323-327 (1971)
[14] Flytzanis, N.; Crowley, S.; Celli, V., High velocity dislocation motion and interatomic force law, J Phys Chem Solids, 38, 539-552 (1977)
[15] Vainchtein, A., Effect of nonlinearity on the steady motion of a twinning dislocation, Phys D, 239, 1170-1179 (2010) · Zbl 1189.37082
[16] Rosakis, P.; Vainchtein, A., New solutions for slow moving kinks in a forced Frenkel-Kontorova chain, J Nonlinear Sci, 23, 6, 1089-1110 (2013) · Zbl 1339.37079
[17] Liu, L.; Vainchtein, A.; Wang, Y., Kinetics of a twinning step, Math Mech Solids, 19, 7, 832-851 (2014) · Zbl 1299.74012
[18] Carpio, A., Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators, Phys Rev E, 69, 046601 (2004)
[19] Strunz, T.; Elmer, F. J., Driven Frenkel-Kontorova model. I. Uniform sliding states and dynamical domains of different particle densities, Phys Rev E, 58, 2, 1601-1611 (1998)
[20] Shiroky, I. B.; Gendelman, O. V., Kinks in chains with on-site bistable nondegenerate potential: Beyond traveling waves, Phys Rev E, 98, 1, 012220 (2018)
[21] Cuevas-Maraver, J.; Kevrekidis, P. G.; Vainchtein, A.; Xu, H., Unifying perspective: Solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability, Phys Rev E, 96, 032214 (2017)
[22] Xu, H.; Cuevas-Maraver, J.; Kevrekidis, P. G.; Vainchtein, A., An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices, Philos Trans R Soc A, 376, 20170192 (2018) · Zbl 1402.37086
[23] Abell, K. A.; Elmer, C. E.; Humphries, A. R.; Vleck, E. S.V., Computation of mixed type functional differential boundary value problems, SIAM J Appl Dyn Syst, 4, 3, 755-781 (2005) · Zbl 1090.65093
[24] Watanabe, S.; van der Zant, H. S.J.; Strogatz, S. H.; Orlando, T. P., Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation, Phys D, 97, 4, 429-470 (1996) · Zbl 1194.35432
[25] Ishioka, S., Steady motion of a dislocation in a lattice, J Phys Soc Jpn, 34, 462-468 (1973)
[26] Ustinov, A. V.; Cirillo, M.; Malomed, B. A., Fluxon dynamics in one-dimensional Josephson-junction arrays, Phys Rev B, 47, 13, 8357-8360 (1993)
[27] Zheng, Z.; Hu, B.; Hu, G., Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain, Phys Rev B, 58, 9, 5453-5461 (1998)
[28] Braun, O. M.; Hu, B.; Zeltser, A., Driven kink in the Frenkel-Kontorova model, Phys Rev E, 62, 3, 4235 (2000)
[29] Brown, D. L.; Forest, M. G.; Miller, B. J.; Petersson, N. A., Computation and stability of fluxons in a singularly perturbed sine-Gordon model of the josephson junction, SIAM J Appl Math, 54, 4, 1048-1066 (1994) · Zbl 0808.34064
[30] Maksimov, A. G.; Pedersen, N. F.; Christiansen, P. L.; Molkov, J. I.; Nekorkin, V. I., On kink-dynamics of the perturbed sine-Gordon equation, Wave Motion, 23, 203-213 (1996) · Zbl 0920.35137
[31] van den Berg, J. B.; van Gils, S. A.; Visser, T. P.P., Parameter dependence of homoclinic solutions in a single long josephson junction, Nonlinearity, 16, 707-717 (2003) · Zbl 1042.34081
[32] Marín, J. L.; Aubry, S., Breathers in nonlinear lattices: numerical calculation from the anticontinuous limit, Nonlinearity, 9, 1501-1528 (1996) · Zbl 0926.70028
[33] Bykov, V. V., Orbit structure in a neighborhood of a separatrix cycle containing two saddle-foci am. math, Soc Trans, 200, 87-97 (2000) · Zbl 1026.37043
[34] Friesecke, G.; Pego, R. L., Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory, Nonlinearity, 17, 1, 207-227 (2003) · Zbl 1103.37049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.