zbMATH — the first resource for mathematics

Chebyshev collocation solutions of the Navier-Stokes equations using multi-domain decomposition and finite element preconditioning. (English) Zbl 0726.76066
Summary: The steady Navier-Stokes equations are solved using series of basis functions involving Chebyshev polynomials. The projection method is a collocation scheme. A Newton’s linearization is performed in order to obtain a set of algebraic equations. As the matrix system is ill conditioned, the collocation technique is preconditioned by a standard Galerkin finite element method using a 9-nodes Lagrangian element which presents decisive advantages: sparsity, reduced condition number, easy treatment of complicated geometries. To handle nontrivial geometries in the collocation process, a domain decomposition is set up. The treatment of interface conditions is fully described. Several test problems like the regularized driven square cavity and the backward facing step are discussed to show the abilities of the present algorithm.

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] Aubert, X.; Deville, M., J. comput. phys., 49, 490, (1983)
[2] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer-Verlag New York · Zbl 0658.76001
[3] Canuto, C.; Pietra, P., J. comput. phys., 91, 310, (1990)
[4] Canuto, C.; Quarteroni, A., J. comput. phys., 60, 315, (1985)
[5] Ciarlet, P., The finite element method for elliptic problems, (1978), North-Holland Amsterdam
[6] Cliffs, K.A.; Jones, I.P.; Porter, J.D.; Thompson, C.P.; Wilkes, N.S., (), 140
[7] Demaret, P.; Deville, M.O., J. comput. phys., 83, 463, (1989)
[8] Demaret, P.; Deville, M.O.; Schneidesch, C., Appl. numer. math., 6, 107, (1989)
[9] Demaret, P.; Deville, M.O., (), 43
[10] Deville, M.O.; Mund, E.H., J. comput. phys., 60, 517, (1985)
[11] Deville, M.O.; Mund, E.H., SIAM J. sci. statist. comput., 12, 311, (1990)
[12] {\scM. O. Deville and E. H. Mund}, Fourier analysis of finite element preconditioned schemes, SIAM J. Sci. Statist. Comput., to appear. · Zbl 0745.65060
[13] Haldenwang, P.; Labrosse, G.; Aboudi, S.; Deville, M., J. comput. phys., 55, 115, (1984)
[14] George, A.; Liu, J.W., SIAM J. num. anal., 17, 282, (1980)
[15] Gordon, W.J.; Hall, C.A., Numer. math., 21, 109, (1973)
[16] Goussebaile, J.; Hauguel, A.; Hervouet, J.M., (), 268
[17] Kueny, L.; Binder, G., (), 32
[18] Maday, Y.; Patera, A.T., Spectral element methods for the incompressible Navier-Stokes equations, (), 71
[19] Morchoisne, Y., Rech. aerosp., 5, 293, (1979)
[20] Orszag, S.A., J. comput. phys., 37, 70, (1980)
[21] Patera, A.J., J. comput. phys., 54, 468, (1984)
[22] Roose, J., (), 358
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.