×

zbMATH — the first resource for mathematics

A hybrid numerical method for three-dimensional spatially-developing free-shear flows. (English) Zbl 0725.76072
Summary: A new algorithm has been developed and implemented for solving the three- dimensional incompressible Navier-Stokes equations on a domain that is infinite in the vertical (y) direction, finite in the streamwise (x) direction, and homogeneous in the spanwise (z) direction. A mapped spectral method is used in y, a classical Fourier method is used in z, and high-order compact finite differencing is used in x. A projection method is discussed that ensures exact conservation of mass and satisfaction of the boundary conditions at infinity. The new aspects of these schemes are described, test cases to validate the code are presented, and results for two- and three-dimensional mixing layers are given.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Comte, P.; Lesieur, M.; Laroche, H.; Normand, X., Turbulent shear flows VI, (1987), Springer-Verlag New York
[2] Kim, J.; Moin, P., J. comput. phys., 59, 308, (1985)
[3] Davis, R.W.; Moore, E.F., Phys. fluids, 28, 1626, (1985)
[4] Lowery, P.S., (), (unpublished)
[5] Cain, A.B.; Ferziger, J.H.; Reynolds, W.C., J. comput. phys., 56, 272, (1984)
[6] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods: theory and applications, () · Zbl 0561.76076
[7] Buell, J.C., J. comput. phys., 75, 54, (1988)
[8] Tuckerman, L.S., J. comput. phys., 80, 403, (1989)
[9] Murdock, J.W., AIAA paper 86-0434, (1986)
[10] Buell, J.C.; Catton, I., J. heat trans., 105, 255, (1983)
[11] Frick, H.; Busse, F.H.; Clever, R.M., J. fluid mech., 127, 141, (1983)
[12] Kim, J.; Moin, P.; Moser, R., J. fluid mech., 177, 133, (1987)
[13] Gaster, M., J. fluid mech., 14, 222, (1962)
[14] Buell, J.C.; Huerre, P., (), 19
[15] Huerre, P.; Monkewitz, P.A., J. fluid mech., 159, 151, (1985)
[16] Lele, S.K., AIAA paper 89-0374, (1989)
[17] \scS. K. Lele, J. Comput. Phys., submitted.
[18] Grosch, C.E.; Orszag, S.A., J. comput. phys., 25, 273, (1977)
[19] Metcalfe, R.W.; Orszag, S.A.; Brachet, M.E.; Menon, S.; Riley, J.J., J. fluid mech., 184, 207, (1987)
[20] Spalart, P.R., Numerical simulation of boundary layers: part 1. weak formulation and numerical method, Nasa tm-88222, (1986), (unpublished)
[21] Rogers, M.M.; Moser, R.D., (), 9.3.1
[22] Cooley, J.W.; Lewis, P.A.W.; Welch, P.D., J. sound vib., 12, 315, (1970)
[23] \scA. A. Wray, Minimal storage time-advancement schemes for spectral methods, J. Comput. Phys., submitted.
[24] Stuart, J.T., J. fluid mech., 29, 417, (1967)
[25] \scJ. H. Chen and N. Sandham, private communication (1988).
[26] Pierrehumbert, R.T.; Widnall, S.E., J. fluid mech., 114, 59, (1982)
[27] Ho, C.M.; Zohar, Y.; Moser, R.D.; Rogers, M.M.; Lele, S.K.; Buell, J.C., (), 29
[28] \scL. S. Huang, C. M. Ho, Small-scale transition in plane mixing layers, J. Fluid Mech., submitted.
[29] Lin, S.J.; Corcos, G.M., J. fluid mech., 141, 139, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.