An application of A-mapping theory to boundary value problems for ordinary differential equations. (English) Zbl 0725.34023

The main purpose of this paper is to present the advantages of the A- mapping theory in the study of the existence of solutions of certain boundary value problems for second-order ordinary differential equations. This approach, dealing with an approximation technique and a version of the topological degree, differs from the usual methods employed in these problems in seeking solutions of boundary value problems as zeros of functional equations rather than as fixed points. The main result concerns problems of the form \(x''=f(t,x,x',x'')\), \(t\in [0,\infty)\), \(x\in {\mathbb{R}}^ N\), \(x\in {\mathbb{B}}\), where f: \([0,\infty)\times {\mathbb{R}}^{3N}\to {\mathbb{R}}^ N\) is continuous and \({\mathbb{B}}\) denotes one of the following boundary conditions \[ \lim_{t\to \infty}x(t)=m\in {\mathbb{R}}^ N,\quad \lim_{t\to \infty}x'(t)=0;\quad x(0)=c\in {\mathbb{R}}^ N,\quad \lim_{t\to \infty}x'(t)=m\in {\mathbb{R}}^ N. \] Other existence problems are also discussed.
Reviewer: P.Pucci (Modena)


34B15 Nonlinear boundary value problems for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
Full Text: DOI


[1] Bernfeld, S.R.; Lakshmikantham, V., An introduction to nonlinear boundary value problems, (1974), Academic Press New York · Zbl 0286.34018
[2] Bernstein, S.N., Sur LES equations du calcul des variations, Annls scient. éc. norm. sup. Paris, 29, 431-485, (1912) · JFM 43.0460.01
[3] Cecchi, M.; Furi, M.; Marini, M., About the solvability of ODE with asymptotic boundary conditions, Bull. un. mat. ital., 4, 329-345, (1985) · Zbl 0587.34013
[4] Dugundji, J.; Granas, A., Fixed point theory, Vol. 1, (1982), Monografie Mat Warzsawa · Zbl 0483.47038
[5] Erbe, L.H., Nonlinear boundary value problems for second order differential equations, J. diff. eqns., 7, 459-472, (1970) · Zbl 0284.34017
[6] Furi, M.; Pera, P., A continuation method on locally convex spaces and application to ODE on noncompact intervals, Ann. polon. math., 47, 331-346, (1987) · Zbl 0656.47052
[7] Gaines, R.E.; Mawhin, J., Coincidence degree and nonlinear equations, () · Zbl 0326.34020
[8] Granas, A.; Guenther, R.B.; Lee, J.W., Nonlinear boundary value problems for ordinary differential equations, Dissnes math., CCXLIV, 1-132, (1985)
[9] Granas, A.; Guenther, R.B.; Lee, J.W.; O’Regan, L., Boundary value problems on infinite intervals and semiconductor devices, J. math. analysis applic., 116, 385-396, (1986) · Zbl 0594.34019
[10] Hetzer, G., Some remarks on ϕ+-operators and the coincidence degree for Fredholm equations with noncompact perturbations, Annls soc. scient brux., 89, 487-508, (1975) · Zbl 0316.47041
[11] Jackson, L.K., Subfunctions and second order ordinary differential equations, Adv. math., 2, 307-363, (1968) · Zbl 0197.06401
[12] Kryszewski, W., Some remarks on the nonlinear eigenvalue problems of Birkhoff-kellogg type, Bull. acad. sci. Pol., 32, 455-462, (1984) · Zbl 0574.47039
[13] Kryszewski, W.; Przeradzki, B., The topological degree and fixed points of DC-mappings, Fund. math., 126, 15-26, (1985) · Zbl 0604.47037
[14] Kryszewski, W., The Lefschetz type theorem for a class of noncompact mappings, Suppl. rc. circ. mat. Palermo, 14, 365-384, (1987) · Zbl 0641.55002
[15] Kryszewski, W.; Przeradzki, B.; Werenski, S., Remarks on approximation methods in degree theory, Trans. am. math. soc., 316, 97-114, (1989) · Zbl 0691.47051
[16] Mawhin, J., Topological degree methods in nonlinear boundary value problems, Reg. conf. ser. math., 40, (1979), Providence, RI · Zbl 0414.34025
[17] Mawhin, J., Points critiques et problemes aux limites, () · Zbl 0561.34001
[18] Nagumo, M., Uber die differentialgleichung \(y″ = ƒ(t,y,y′)\), Proc. phys. math. soc. Japan, 19, 861-866, (1937) · JFM 63.1021.04
[19] Nowak, B., DJ—odwzorowania i ich homotopie, Acta univ. lodziensis, (1981)
[20] Petryshyn, W.V., On the approximation solvability of equations involving A-proper and pseudo-A-proper mappings, Bull. am. math. soc., 81, 223-312, (1975) · Zbl 0303.47038
[21] Petryshyn, W.V.; Yu, Z.S., Periodic solutions of nonlinear second-order differential equations which are not solvable for the highest derivative, J. math. analysis applic., 89, 462-488, (1982) · Zbl 0516.34019
[22] Petryshyn, W.V.; Yu, Z.S., Solvability of Neumann BV problems for nonlinear second order ODEs which need not be solvable for the highest order derivative, J. math. analysis applic., 91, 244-253, (1983) · Zbl 0513.34020
[23] Petryshyn, W.V., Solvability of various boundary value problems for the equation \(x″ = ƒ(t,x,x′,x″) − y\), Pacif. J. math., 122, 169-195, (1986) · Zbl 0585.34020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.