zbMATH — the first resource for mathematics

A non-local cross-diffusion model of population dynamics I: emergent spatial and spatiotemporal patterns. (English) Zbl 1448.92253
Summary: We extend a spatially non-local cross-diffusion model of aggregation between multiple species with directed motion toward resource gradients to include many species and more general kinds of dispersal. We first consider diffusive instabilities, determining that for directed motion along fecundity gradients, the model permits the Turing instability leading to colony formation and persistence provided there are three or more interacting species. We also prove that such patterning is not possible in the model under the Turing mechanism for two species under directed motion along fecundity gradients, confirming earlier findings in the literature. However, when the directed motion is not along fecundity gradients, for instance, if foraging or migration is sub-optimal relative to fecundity gradients, we find that very different colony structures can emerge. This generalization also permits colony formation for two interacting species. In the advection-dominated case, aggregation patterns are more broad and global in nature, due to the inherent non-local nature of the advection which permits directed motion over greater distances, whereas in the diffusion-dominated case, more highly localized patterns and colonies develop, owing to the localized nature of random diffusion. We also consider the interplay between Turing patterning and spatial heterogeneity in resources. We find that for small spatial variations, there will be a combination of Turing patterns and patterning due to spatial forcing from the resources, whereas for large resource variations, spatial or spatiotemporal patterning can be modified greatly from what is predicted on homogeneous domains. For each of these emergent behaviors, we outline the theoretical mechanism leading to colony formation and then provide numerical simulations to illustrate the results. We also discuss implications this model has for studies of directed motion in different ecological settings.

92D25 Population dynamics (general)
92D40 Ecology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI
[1] Abrams, PA, Habitat choice in predator-prey systems: spatial instability due to interacting adaptive movements, Am Nat, 169, 5, 581-594 (2007)
[2] Abrams, PA; Cressman, R.; Křivan, V., The role of behavioral dynamics in determining the patch distributions of interacting species, Am Nat, 169, 4, 505-518 (2007)
[3] Ackland, GJ; Gallagher, ID, Stabilization of large generalized Lotka-Volterra foodwebs by evolutionary feedback, Phys Rev Lett, 93, 15, 158701 (2004)
[4] Albrecht, M.; Gotelli, N., Spatial and temporal niche partitioning in grassland ants, Oecologia, 126, 1, 134-141 (2001)
[5] Ali, SW; Cosner, C., Models for the effects of individual size and spatial scale on competition between species in heterogeneous environments, Math Biosci, 127, 1, 45-76 (1995) · Zbl 0821.92023
[6] Allen, AM; Singh, NJ, Linking movement ecology with wildlife management and conservation, Front Ecol Evolut, 3, 155 (2016)
[7] Alonso, D.; Bartumeus, F.; Catalan, J., Mutual interference between predators can give rise to Turing spatial patterns, Ecology, 83, 1, 28-34 (2002)
[8] Amarasekare, P., Spatial dynamics of communities with intraguild predation: the role of dispersal strategies, Am Nat, 170, 6, 819-831 (2007)
[9] Andresén, P.; Bache, M.; Mosekilde, E.; Dewel, G.; Borckmanns, P., Stationary space-periodic structures with equal diffusion coefficients, Phys Rev E, 60, 1, 297 (1999)
[10] Armsworth, PR; Roughgarden, JE, Disturbance induces the contrasting evolution of reinforcement and dispersiveness is directed and random movers, Evolution, 59, 10, 2083-2096 (2005)
[11] Armsworth, PR; Roughgarden, JE, The impact of directed versus random movement on population dynamics and biodiversity patterns, Am Nat, 165, 4, 449-465 (2005)
[12] Armsworth, PR; Roughgarden, JE, The structure of clines with fitness-dependent dispersal, Am Nat, 172, 5, 648-657 (2008)
[13] Bassett, A.; Krause, AL; Van Gorder, RA, Continuous dispersal in a model of predator-prey-subsidy population dynamics, Ecol Model, 354, 115-122 (2017)
[14] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J Theor Biol, 245, 2, 220-229 (2007)
[15] Bennett, JJ; Sherratt, JA, How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems?, Appl Math Lett, 94, 80-86 (2019) · Zbl 1411.92242
[16] Benson, DL; Sherratt, JA; Maini, PK, Diffusion driven instability in an inhomogeneous domain, Bull Math Biol, 55, 2, 365-384 (1993) · Zbl 0758.92003
[17] Bernasconi, G.; Boissonade, J., Phyllotactic order induced by symmetry breaking in advected turing patterns, Phys Lett A, 232, 3-4, 224-230 (1997) · Zbl 1053.92500
[18] Bertsch, M.; Gurtin, ME; Hilhorst, D.; Peletier, L., On interacting populations that disperse to avoid crowding: preservation of segregation, J Math Biol, 23, 1, 1-13 (1985) · Zbl 0596.35074
[19] Bolnick, DI; Otto, SP, The magnitude of local adaptation under genotype-dependent dispersal, Ecol Evolut, 3, 14, 4722-4735 (2013)
[20] Burger, M.; Di Francesco, M.; Pietschmann, JF; Schlake, B., Nonlinear cross-diffusion with size exclusion, SIAM J Math Anal, 42, 6, 2842-2871 (2010) · Zbl 1227.35155
[21] Cantrell, RS; Cosner, C.; Lou, Y.; Xie, C., Random dispersal versus fitness-dependent dispersal, J Differ Equ, 254, 7, 2905-2941 (2013) · Zbl 1263.35203
[22] Chen, W.; Peng, R., Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model, J Math Anal Appl, 291, 2, 550-564 (2004) · Zbl 1060.35146
[23] Chen, X.; Hambrock, R.; Lou, Y., Evolution of conditional dispersal: a reaction-diffusion-advection model, J Math Biol, 57, 3, 361-386 (2008) · Zbl 1141.92040
[24] Cobbold, CA; Lutscher, F.; Sherratt, JA, Diffusion-driven instabilities and emerging spatial patterns in patchy landscapes, Ecol Complex, 24, 69-81 (2015)
[25] Dawson, SP; Lawniczak, A.; Kapral, R., Interaction of Turing and flow-induced chemical instabilities, J Chem Phys, 100, 7, 5211-5218 (1994)
[26] Dillon, R.; Maini, P.; Othmer, H., Pattern formation in generalized Turing systems, J Math Biol, 32, 4, 345-393 (1994) · Zbl 0829.92001
[27] Dubey, B.; Das, B.; Hussain, J., A predator-prey interaction model with self and cross-diffusion, Ecol Model, 141, 1-3, 67-76 (2001)
[28] Fasani, S.; Rinaldi, S., Factors promoting or inhibiting Turing instability in spatially extended prey-predator systems, Ecol Model, 222, 18, 3449-3452 (2011)
[29] Ferreira JD, da Silva SH, Rao VSH (2019) Stability analysis of predator-prey models involving cross-diffusion. Phys D Nonlinear Phenomena (in Press)
[30] Fitzsimons, MS; Miller, RM; Jastrow, JD, Scale-dependent niche axes of arbuscular mycorrhizal fungi, Oecologia, 158, 1, 117-127 (2008)
[31] Fontbona, J.; Méléard, S., Non local Lotka-Volterra system with cross-diffusion in an heterogeneous medium, J Math Biol, 70, 4, 829-854 (2015) · Zbl 1345.92117
[32] Galiano, G., Modeling spatial adaptation of populations by a time non-local convection cross-diffusion evolution problem, Appl Math Comput, 218, 8, 4587-4594 (2011) · Zbl 1244.92054
[33] Gambino G, Lombardo M, Sammartino M (2008) Cross-diffusion driven instability for a Lotka-Volterra competitive reaction-diffusion system. In: Waves and stability in continuous media, World Scientific, pp 297-302 · Zbl 1196.35121
[34] Gambino, G.; Lombardo, M.; Sammartino, M., Pattern formation driven by cross-diffusion in a 2d domain, Nonlinear Anal Real World Appl, 14, 3, 1755-1779 (2013) · Zbl 1270.35088
[35] Garvie, MR; Golinski, M., Metapopulation dynamics for spatially extended predator-prey interactions, Ecol Complex, 7, 1, 55-59 (2010)
[36] Grindrod, P., Models of individual aggregation or clustering in single and multi-species communities, J Math Biol, 26, 6, 651-660 (1988) · Zbl 0714.92024
[37] Grindrod, P., Patterns and waves: the theory and applications of reaction-diffusion equations (1991), Oxford: Oxford University Press, Oxford · Zbl 0743.35032
[38] Gurtin, ME; MacCamy, RC, On the diffusion of biological populations, Math Biosci, 33, 1-2, 35-49 (1977) · Zbl 0362.92007
[39] Hadany, L.; Eshel, I.; Motro, U., No place like home: competition, dispersal and complex adaptation, J Evolut Biol, 17, 6, 1328-1336 (2004)
[40] Hagman M, Phillips BL, Shine R (2008) Tails of enticement: caudal luring by an ambush-foraging snake (Acanthophis praelongus, Elapidae). Funct Ecol:1134-1139
[41] Hambrock, R.; Lou, Y., The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bull Math Biol, 71, 8, 1793 (2009) · Zbl 1179.92060
[42] Hastings, A.; Petrovskii, S.; Morozov, A., Spatial ecology across scales, Biol Lett, 7, 2, 163 (2011)
[43] Heil, M., Indirect defence via tritrophic interactions, New Phytol, 178, 1, 41-61 (2008)
[44] Hillen, T.; Painter, KJ, A user’s guide to PDE models for chemotaxis, J Math Biol, 58, 1-2, 183 (2009) · Zbl 1161.92003
[45] Holden, C., Inching toward movement ecology, Science, 313, 5788, 779-782 (2006)
[46] Jansen, JE; Van Gorder, RA, Dynamics from a predator-prey-quarry-resource-scavenger model, Theor Ecol, 11, 1, 19-38 (2018)
[47] Kareiva, P.; Odell, G., Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search, Am Nat, 130, 2, 233-270 (1987)
[48] Kishimoto, K., The diffusive Lotka-Volterra system with three species can have a stable non-constant equilibrium solution, J Math Biol, 16, 1, 103-112 (1982) · Zbl 0496.92011
[49] Kishimoto, K.; Weinberger, HF, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J Differ Equ, 58, 1, 15-21 (1985) · Zbl 0599.35080
[50] Kishimoto, K.; Mimura, M.; Yoshida, K., Stable spatio-temporal oscillations of diffusive Lotka-Volterra system with three or more species, J Math Biol, 18, 3, 213-221 (1983) · Zbl 0521.92018
[51] Kondo, S.; Miura, T., Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329, 5999, 1616-1620 (2010) · Zbl 1226.35077
[52] Kondratyev, S.; Monsaingeon, L.; Vorotnikov, D., A fitness-driven cross-diffusion system from population dynamics as a gradient flow, J Differ Equ, 261, 5, 2784-2808 (2016) · Zbl 1343.35132
[53] Krause, AL; Burton, AM; Fadai, NT; Van Gorder, RA, Emergent structures in reaction-advection-diffusion systems on a sphere, Phys Rev E, 97, 4, 042215 (2018)
[54] Krause, AL; Klika, V.; Woolley, TE; Gaffney, EA, Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems, Phys Rev E, 97, 5, 052206 (2018)
[55] Krause AL, Klika V, Woolley TE, Gaffney EA (2020) From one pattern into another: analysis of turing patterns in heterogeneous domains via WKBJ. J R Soc Interface (in Press)
[56] Krause AL, Van Gorder RA (2020) A non-local cross-diffusion model of population dynamics II: Exact, approximate, and numerical traveling waves
[57] Kurowski, L.; Krause, AL; Mizuguchi, H.; Grindrod, P.; Van Gorder, RA, Two-species migration and clustering in two-dimensional domains, Bull Math Biol, 79, 10, 2302-2333 (2017) · Zbl 1378.92058
[58] Kuznetsov, YA; Antonovsky, MY; Biktashev, V.; Aponina, E., A cross-diffusion model of forest boundary dynamics, J Math Biol, 32, 3, 219-232 (1994) · Zbl 0790.92028
[59] Laundré, JW; Lucina, H.; William, JR, The landscape of fear: ecological implications of being afraid, Open Ecol J, 3, 1-7 (2010)
[60] Lee, JM; Hillen, T.; Lewis, MA, Pattern formation in prey-taxis systems, J Biol Dyn, 3, 6, 551-573 (2009) · Zbl 1315.92064
[61] Lewis, MA; Murray, JD, Modelling territoriality and wolf-deer interactions, Nature, 366, 6457, 738 (1993)
[62] Lewis MA, Maini PK, Petrovskii SV (2013). Dispersal, individual movement and spatial ecology. Lecture Notes in Mathematics (Mathematics Bioscience Series) 2071 · Zbl 1264.92051
[63] Lorenzetti, F.; Arnason, J.; Philogene, B.; Hamilton, R., Evidence for spatial niche partitioning in predaceous aphidophaga: use of plant colour as a cue, Entomophaga, 42, 1-2, 49 (1997)
[64] Lou, Y.; Ni, WM, Diffusion, self-diffusion and cross-diffusion, J Differ Equ, 131, 1, 79-131 (1996) · Zbl 0867.35032
[65] Lou, Y.; Ni, WM, Diffusion, self-diffusion and cross-diffusion, J Differ Equ, 131, 1, 79-131 (1996) · Zbl 0867.35032
[66] Lou, Y.; Ni, WM; Yotsutani, S., Pattern formation in a cross-diffusion system, Discrete Contin Dyn Syst, 35, 4, 1589-1607 (2015) · Zbl 1307.35040
[67] Lutscher, F., Integrodifference equations in spatial ecology (2019), Cham: Springer, Cham · Zbl 1445.45001
[68] Lv, Y.; Yuan, R.; Pei, Y., Turing pattern formation in a three species model with generalist predator and cross-diffusion, Nonlinear Anal Theory Methods Appl, 85, 214-232 (2013) · Zbl 1283.35152
[69] Lyson, TR; Longrich, NR, Spatial niche partitioning in dinosaurs from the latest cretaceous (maastrichtian) of North America, Proc R Soc B Biol Sci, 278, 1709, 1158-1164 (2010)
[70] Ma, ZP; Li, WT; Wang, YX, Spatiotemporal patterns induced by cross-diffusion in a three-species food chain model, Int J Bifurc Chaos, 27, 1, 1750011 (2017) · Zbl 1358.35206
[71] Madin, EM; Madin, JS; Booth, DJ, Landscape of fear visible from space, Sci Rep, 1, 14 (2011)
[72] Malchow, H.; Petrovskii, SV; Venturino, E., Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation (2007), London: Chapman and Hall/CRC, London
[73] Matano, H.; Mimura, M., Pattern formation in competition-diffusion systems in nonconvex domains, Publ Res Inst Math Sci, 19, 3, 1049-1079 (1983) · Zbl 0548.35063
[74] Míguez, DG; Satnoianu, RA; Muñuzuri, AP, Experimental steady pattern formation in reaction-diffusion-advection systems, Phys Rev E, 73, 2, 025201 (2006)
[75] Mitchell, MS; Powell, RA, A mechanistic home range model for optimal use of spatially distributed resources, Ecol Model, 177, 1-2, 209-232 (2004)
[76] Moorcroft, PR; Lewis, MA; Crabtree, RL, Home range analysis using a mechanistic home range model, Ecology, 80, 5, 1656-1665 (1999)
[77] Morozov, A.; Petrovskii, S.; Li, BL, Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect, J Theor Biol, 238, 1, 18-35 (2006)
[78] Mukherjee, N.; Ghorai, S.; Banerjee, M., Cross-diffusion induced Turing and non-Turing patterns in Rosenzweig-MacArthur model, Lett Biomath (2019)
[79] Murray, JD, Mathematical biology II: spatial models and biomedical applications (2003), New York: Springer, New York
[80] Murrell, DJ; Law, R., Heteromyopia and the spatial coexistence of similar competitors, Ecol Lett, 6, 1, 48-59 (2003)
[81] Nakagaki, T.; Yamada, H.; Ito, M., Reaction-diffusion-advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum Plasmodium, J Theor Biol, 197, 4, 497-506 (1999)
[82] Nasreddine, E., Well-posedness for a model of individual clustering, Discrete Contin Dyn Syst Ser B, 18, 10, 2647-2668 (2012) · Zbl 1277.35122
[83] Nasreddine, E., Two-dimensional individual clustering model, Discrete Contin Dyn Syst S, 7, 2, 307-316 (2014) · Zbl 1275.35117
[84] Nathan, R.; Muller-Landau, HC, Spatial patterns of seed dispersal, their determinants and consequences for recruitment, Trends Ecol Evolut, 15, 7, 278-285 (2000)
[85] Nathan, R., An emerging movement ecology paradigm, Proc Natl Acad Sci, 105, 49, 19050-19051 (2008)
[86] Novak, M.; Yeakel, JD; Noble, AE; Doak, DF; Emmerson, M.; Estes, JA; Jacob, U.; Tinker, M.; Wootton, JT, Characterizing species interactions to understand press perturbations: What is the community matrix?, Annu Rev Ecol Evolut Syst, 47, 409-432 (2016)
[87] Nugent, C.; Quarles, W.; Solomon, T., Experimental studies of pattern formation in a reaction-advection-diffusion system, Phys Rev Lett, 93, 21, 218301 (2004)
[88] Orr, HA, Fitness and its role in evolutionary genetics, Nat Rev Gen, 10, 8, 531 (2009)
[89] Padrón, V., Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Commun Par Differ Equ, 23, 3-4, 457-486 (1998) · Zbl 0910.35138
[90] Padrón V (2004) Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation. Trans Am Math Soc:2739-2756 · Zbl 1056.35103
[91] Page, K.; Maini, PK; Monk, NA, Pattern formation in spatially heterogeneous Turing reaction-diffusion models, Phys D Nonlinear Phenom, 181, 1-2, 80-101 (2003) · Zbl 1024.35045
[92] Page, KM; Maini, PK; Monk, NA, Complex pattern formation in reaction-diffusion systems with spatially varying parameters, Phys D Nonlinear Phenom, 202, 1-2, 95-115 (2005) · Zbl 1065.35145
[93] Peng, R.; Wang, M.; Yang, G., Stationary patterns of the Holling-Tanner prey-predator model with diffusion and cross-diffusion, Appl Math Comput, 196, 2, 570-577 (2008) · Zbl 1131.92067
[94] Petrovskii, SV; Morozov, AY; Venturino, E., Allee effect makes possible patchy invasion in a predator-prey system, Ecol Lett, 5, 3, 345-352 (2002)
[95] Potts, JR; Lewis, MA, How do animal territories form and change? Lessons from 20 years of mechanistic modelling, Proc R Soc B Biol Sci, 281, 1784, 20140231 (2014)
[96] Potts, JR; Lewis, MA, Spatial memory and taxis-driven pattern formation in model ecosystems, Bull Math Biol, 81, 2725-2747 (2019) · Zbl 1417.92217
[97] Quillfeldt, P.; Masello, JF; Navarro, J.; Phillips, RA, Year-round distribution suggests spatial segregation of two small petrel species in the South Atlantic, J Biogeogr, 40, 3, 430-441 (2013)
[98] Riaz, SS; Kar, S.; Ray, DS, Differential flow induced transition of Hopf instability to Turing instability and pattern formation, Phys D Nonlinear Phenom, 203, 3-4, 224-232 (2005) · Zbl 1089.37535
[99] Richardson, JL; Urban, MC; Bolnick, DI; Skelly, DK, Microgeographic adaptation and the spatial scale of evolution, Trends Ecol Evolut, 29, 3, 165-176 (2014)
[100] Rovinsky, AB; Menzinger, M., Chemical instability induced by a differential flow, Phys Rev Lett, 69, 8, 1193 (1992)
[101] Rowell, JT, The limitation of species range: a consequence of searching along resource gradients, Theor Popul Biol, 75, 2-3, 216-227 (2009) · Zbl 1211.92066
[102] Ruxton, GD; Rohani, P., Fitness-dependent dispersal in metapopulations and its consequences for persistence and synchrony, J Anim Ecol, 68, 3, 530-539 (1999)
[103] Satnoianu, RA; Menzinger, M.; Maini, PK, Turing instabilities in general systems, J Math Biol, 41, 6, 493-512 (2000) · Zbl 1002.92002
[104] Schuette, P.; Wagner, AP; Wagner, ME; Creel, S., Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures, Biol Conserv, 158, 301-312 (2013)
[105] Shepard, EL; Wilson, RP; Rees, WG; Grundy, E.; Lambertucci, SA; Vosper, SB, Energy landscapes shape animal movement ecology, Am Nat, 182, 3, 298-312 (2013)
[106] Sherratt, JA, Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds, Proc R Soc A Math Phys Eng Sci, 467, 2135, 3272-3294 (2011) · Zbl 1239.92085
[107] Sherratt, JA; Eagan, BT; Lewis, MA, Oscillations and chaos behind predator-prey invasion: Mathematical artifact or ecological reality?, Philos Trans R Soc Lond Ser B Biol Sci, 352, 1349, 21-38 (1997)
[108] Shigesada, N.; Kawasaki, K.; Teramoto, E., Spatial segregation of interacting species, J Theor Biol, 79, 1, 83-99 (1979)
[109] Strobl MAR, Krause AL, Damaghi M, Gillies R, Anderson ARA, Maini PK (2019) Mix & Match: phenotypic coexistence as a key facilitator of solid tumour invasion. Bull Math Biol (in Press) · Zbl 1432.92031
[110] Taylor, P.; Crewe, T.; Mackenzie, S.; Lepage, D.; Aubry, Y.; Crysler, Z.; Finney, G.; Francis, C.; Guglielmo, C.; Hamilton, D.; Holberton, R., The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement, Avian Conserv Ecol, 12, 1, 8 (2017)
[111] Tian, C.; Ling, Z.; Lin, Z., Turing pattern formation in a predator-prey-mutualist system, Nonlinear Anal Real World Appl, 12, 6, 3224-3237 (2011) · Zbl 1231.35275
[112] Turing, AM, The chemical basis of morphogenesis, Philos Trans R Soc Lond Ser B Biol Sci, 237, 641, 37-72 (1952) · Zbl 1403.92034
[113] Wang, W.; Lin, Y.; Zhang, L.; Rao, F.; Tan, Y., Complex patterns in a predator-prey model with self and cross-diffusion, Commun Nonlinear Sci Numer Simul, 16, 4, 2006-2015 (2011) · Zbl 1221.35423
[114] Wen, Z.; Fu, S., Turing instability for a competitor-competitor-mutualist model with nonlinear cross-diffusion effects, Chaos Solitons Fractals, 91, 379-385 (2016) · Zbl 1372.92096
[115] Winder, M., Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells, J Plankton Res, 31, 11, 1307-1320 (2009)
[116] Zhao, Q.; Van den Brink, PJ; Carpentier, C.; Wang, YX; Rodríguez-Sánchez, P.; Xu, C.; Vollbrecht, S.; Gillissen, F.; Vollebregt, M.; Wang, S.; De Laender, F., Horizontal and vertical diversity jointly shape food web stability against small and large perturbations, Ecol Lett, 22, 7, 1152-1162 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.