zbMATH — the first resource for mathematics

Approximation of Bayesian models for time-to-event data. (English) Zbl 1448.62043
Summary: Random measures are the key ingredient for effective nonparametric Bayesian modeling of time-to-event data. This paper focuses on priors for the hazard rate function, a popular choice being the kernel mixture with respect to a gamma random measure. Sampling schemes are usually based on approximations of the underlying random measure, both a priori and conditionally on the data. Our main goal is the quantification of approximation errors through the Wasserstein distance. Though easy to simulate, the Wasserstein distance is generally difficult to evaluate, making tractable and informative bounds essential. Here we accomplish this task on the wider class of completely random measures, yielding a measure of discrepancy between many noteworthy random measures, including the gamma, generalized gamma and beta families. By specializing these results to gamma kernel mixtures, we achieve upper and lower bounds for the Wasserstein distance between hazard rates, cumulative hazard rates and survival functions.
62G07 Density estimation
62N05 Reliability and life testing
62M40 Random fields; image analysis
60G60 Random fields
60A10 Probabilistic measure theory
Full Text: DOI Euclid
[1] Al Masry, Z., Mercier, S. and Verdier, G. (2017). Approximate simulation techniques and distribution of an extended gamma process., Methodology and Computing in Applied Probability 19 213-235. · Zbl 1360.60161
[2] Arbel, J., De Blasi, P. and Prünster, I. (2019). Stochastic approximations to the Pitman-Yor process., Bayesian Analysis 15 1303-1356. · Zbl 1435.62076
[3] Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap., Ann. Statist. 9 1196-1217. · Zbl 0449.62034
[4] Bondesson, L. (1982). On simulation from infinitely divisible distributions., Advances in Applied Probability 14 855-869. · Zbl 0494.60013
[5] Campbell, T., Huggins, J. H., How, J. P. and Broderick, T. (2019). Truncated random measures., Bernoulli 25 1256-1288. · Zbl 07049406
[6] Chen, J. (1995). Optimal rate of convergence for finite mixture models., Ann. Statist. 23 221-233. · Zbl 0821.62023
[7] Cifarelli, D. M., Dolera, E. and Regazzini, E. (2016). Frequentistic approximations to Bayesian prevision of exchangeable random elements., International Journal of Approximate Reasoning 78. · Zbl 06639851
[8] Cifarelli, D. M. and Regazzini, E. (2017). On the centennial anniversary of Gini’s theory of statistical relations., Metron 75 227-242. · Zbl 1384.62166
[9] Daley, D. J. and Vere-Jones, D. (2002)., An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods. Probability and Its Applications. Springer.
[10] Daley, D. J. and Vere-Jones, D. (2007)., An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure. Probability and Its Applications. Springer New York.
[11] Dall’Aglio, G. (1956). Sugli estremi dei momenti delle funzioni di ripartizione doppia., Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10 35-74. · Zbl 0073.14002
[12] De Blasi, P., Peccati, G. and Prünster, I. (2009). Asymptotics for posterior hazards., Ann. Statist. 37 1906-1945. · Zbl 1168.62042
[13] De Iorio, M., Johnson, W. O., Müller, P. and Rosner, G. L. (2009). Bayesian nonparametric nonproportional hazards survival modeling., Biometrics 65 762-771. · Zbl 1172.62073
[14] Doksum, K. (1974). Tailfree and neutral random probabilities and their posterior distributions., Ann. Probab. 2 183-201. · Zbl 0279.60097
[15] Donnet, S., Rivoirard, V., Rousseau, J. and Scricciolo, C. (2018). Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures., Bernoulli 24 231-256. · Zbl 1390.62008
[16] Dudley, R. M. (1976)., Probabilities and metrics: convergence of laws on metric spaces, with a view to statistical testing. Lecture notes series. Aarhus Universitet, Matematisk Institut. · Zbl 0355.60004
[17] Dykstra, R. L. and Laud, P. (1981). A Bayesian nonparametric approach to reliability., Ann. Statist. 9 356-367. · Zbl 0469.62077
[18] Ferguson, T. S. and Klass, M. J. (1972). A representation of independent increment processes without Gaussian components., Ann. Math. Statist. 43 1634-1643. · Zbl 0254.60050
[19] Flamary, R. and Courty, N. (2017). POT Python Optimal Transport, library.
[20] Gairing, J., Högele, M., Kosenkova, T. and Kulik, A. (2015). Coupling distances between Lévy measures and applications to noise sensitivity of SDE., Stochastics and Dynamics 15 1550009. · Zbl 1318.60054
[21] Gao, F. and van der Vaart, A. (2016). Posterior contraction rates for deconvolution of Dirichlet-Laplace mixtures., Electron. J. Statist. 10 608-627. · Zbl 1332.62157
[22] Geller, M. and W. Ng, E. (1969). A table of integrals of exponential integral., Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences 73B. · Zbl 0183.44003
[23] Ghosal, S. and van der Vaart, A. (2017)., Fundamentals of Nonparametric Bayesian Inference. Cambridge Series in Statistical and Probabilistic Mathematics 44. Cambridge University Press, Cambridge. · Zbl 1376.62004
[24] Gini, C. (1914). Di una misura delle relazioni tra le graduatorie di due caratteri., Saggi monografici del Comune di Roma, Tip. Cecchini.
[25] Hanson, T. E., Jara, A. and Zhao, L. (2012). A Bayesian semiparametric temporally-stratified proportional hazards Model with Spatial Frailties., Bayesian Anal. 7 147-188. · Zbl 1330.62368
[26] Heinrich, P. and Kahn, J. (2018). Strong identifiability and optimal minimax rates for finite mixture estimation., Ann. Statist. 46 2844-2870. · Zbl 1420.62215
[27] Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data., Ann. Statist. 18 1259-1294. · Zbl 0711.62033
[28] Hjort, N. L., Holmes, C., Müller, P. and Walker, S. G. (2010)., Bayesian Nonparametrics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
[29] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors., J. Amer. Statist. Assoc. 96 161-173. · Zbl 1014.62006
[30] Ishwaran, H. and James, L. F. (2004). Computational methods for multiplicative intensity models using weighted gamma processes., Journal of the American Statistical Association 99 175-190. · Zbl 1089.62520
[31] James, L. F. (2003). Bayesian calculus for gamma processes with applications to semiparametric intensity models., Sankhyā: The Indian Journal of Statistics (2003-2007) 65 179-206.
[32] James, L. F. (2005). Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages., Ann. Statist. 33 1771-1799. · Zbl 1078.62106
[33] Kingman, J. F. C. (1967). Completely random measures., Pacific J. Math. 21 59-78. · Zbl 0155.23503
[34] Laud, P. W., Smith, A. F. M. and Damien, P. (1996). Monte Carlo methods for approximating a posterior hazard rate process., Statistics and Computing 6 77-83.
[35] Lijoi, A. and Nipoti, B. (2014). A class of hazard rate mixtures for combining survival data from different experiments., Journal of the American Statistical Association 109 802-814. · Zbl 1367.62281
[36] Lijoi, A. and Prünster, I. (2010)., Models beyond the Dirichlet process. In Bayesian Nonparametrics. Cambridge Series in Statistical and Probabilistic Mathematics 80-136. Cambridge University Press. · Zbl 1200.62019
[37] Lo, A. and Weng, C.-S. (1989). On a class of Bayesian nonparametric estimates: II. Hazard rate estimates., Annals of the Institute of Statistical Mathematics 41 227-245. · Zbl 0716.62043
[38] Mallows, C. L. (1972). A note on asymptotic joint normality., Ann. Math. Statist. 43 508-515. · Zbl 0238.60017
[39] Mariucci, E. and Reiß, M. (2018). Wasserstein and total variation distance between marginals of Lévy processes., Electron. J. Statist. 12 2482-2514. · Zbl 1405.60062
[40] Mijoule, G., Peccati, G. and Swan, Y. (2016). On the rate of convergence in de Finetti’s representation theorem., ALEA Lat. Am. J. Probab. Math. Stat. 13 1165-1187. · Zbl 1355.60032
[41] Müller, P., Quintana, F. A., Jara, A. and Hanson, T. (2015)., Bayesian nonparametric data analysis. Springer Series in Statistics. Springer, Cham. · Zbl 1333.62003
[42] Nguyen, X. (2013). Convergence of latent mixing measures in finite and infinite mixture models., Ann. Statist. 41 370-400. · Zbl 1347.62117
[43] Nipoti, B., Jara, A. and Guindani, M. (2018). A Bayesian semiparametric partially PH model for clustered time-to-event data., Scandinavian Journal of Statistics 45 1016-1035. · Zbl 1408.62118
[44] Panaretos, V. M. and Zemel, Y. (2018). Statistical aspects of Wasserstein distances., To appear in Annual Review of Statistics and Its Applications. arXiv:1806.05500.
[45] Pennell, M. L. and Dunson, D. B. (2006). Bayesian semiparametric dynamic frailty models for multiple event time Data., Biometrics 62 1044-1052. · Zbl 1116.62127
[46] Rachev, S. (1985). The Monge-Kantorovich mass transference problem and its stochastic applications., Theory of Probability & Its Applications 29 647-676. · Zbl 0581.60010
[47] Rosinski, J. (2001)., Series representations of Lévy processes from the perspective of point processes In Lévy Processes: Theory and Applications 401-415. Birkhäuser Boston, Boston, MA. · Zbl 0985.60048
[48] Sato, K. (1999)., Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics. Cambridge University Press.
[49] Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B. and Lanckriet, G. R. G. (2012). On the empirical estimation of integral probability metrics., Electron. J. Statist. 6 1550-1599. · Zbl 1295.62035
[50] Srivastava, S., Li, C. and Dunson, D. (2015). Scalable Bayes via barycenter in Wasserstein space., Journal of Machine Learning Research 19. · Zbl 1444.62037
[51] Villani, C. (2008)., Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg.
[52] Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics., Biometrika 85 251-267. · Zbl 0951.62082
[53] Zhou, H. · Zbl 06446560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.