Sarigul, Nesrin; Gallagher, Richard H. Assumed stress function finite element method: Two-dimensional elasticity. (English) Zbl 0724.73218 Int. J. Numer. Methods Eng. 28, No. 7, 1577-1598 (1989). Summary: A complementary energy-based finite element formulation, using assumed stress functions as the approximating functions, is developed for the linear elastic two-dimensional stress analysis. It features the use of blending function interpolants, enabling the convenient representation of traction boundary conditions, which in the past have posed difficulties. A family of rectangular elements is constructed. Numerical results assessing the behaviour of these elements are presented. An advantage of this approach is in the accurate prediction of stress distributions. Cited in 4 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74B10 Linear elasticity with initial stresses Keywords:complementary energy-based finite element formulation; blending function interpolants; traction boundary conditions; family of rectangular elements PDF BibTeX XML Cite \textit{N. Sarigul} and \textit{R. H. Gallagher}, Int. J. Numer. Methods Eng. 28, No. 7, 1577--1598 (1989; Zbl 0724.73218) Full Text: DOI OpenURL References: [1] and , Energy Theorems and Structural Analysis, Butterworths, London, 1960. [2] and , ’Direct flexibility finite element elastoplastic analysis’. SMIRT, 1972, 444-462. [3] Rybicki, AIAA J. 8 pp 1805– (1969) [4] Belytschko, J. Eng. Mech. Div. ASCE 96 pp 931– (1970) [5] Anderheggen, J. Eng. Mech. Div. ASCE 95 pp 841– (1969) [6] ’Upper and lower bounds in matrix structural analysis’, in (ed.), Matrix Methods of Structural Analysis, MacMillan, New York, 1964, pp. 165-201. [7] Fraeijs de Veubeke, J. Franklin Inst. 302 pp 389– (1976) [8] Watwood, Int. J. Solids Struct. 4 pp 857– (1968) [9] and , ’Complementary energy with penalty functions in finite element analysis’, in et al. (eds.), Energy Methods in Finite Element Analysis, Wiley, New York, 1979, Chapter 8, pp. 154-174. [10] ’Dual formations of linear elasticity using finite elements’, in (ed.), Computer Aided Engineering, University of Waterloo, 1971. [11] Elias, J. Eng. Mech. Div. ASCE 94 pp 931– (1968) [12] Finite Element Analysis: Fundamentals, Prentice-Hall, Englewood Cliffs, New Jersey, 1975. [13] Michell, Proc. London Math. Soc. XXXI pp 100– (1899) [14] Michell, Proc. London Math. Soc. XXXI pp 130– (1899) [15] Truesdell, Archive Rat. Mech. Anal. 4 pp 1– (1960) [16] Fraeijs de Veubeke, J. Strain Anal. 2 pp 265– (1967) [17] Harvey, Int. j. numer. methods eng. 19 pp 971– (1983) [18] Vallabhan, Int. j. numer. methods eng. 18 pp 291– (1982) [19] and , ’Single domain equilibrium approximations in two dimensional elasticity’. Proc. 3rd Int. Conf. in Australia on FEM, 1979, 101-103. [20] Tabarrok, Int. j. numer. methods eng. 5 pp 532– (1972) [21] Sundararajan, Int. j. numer. methods eng. 15 pp 343– (1980) [22] ’Assumed stress function finite element method’. University of Arizona, Tucson, AZ, 1984. [23] ’Surfaces for computer aided design of space forms’, Project MAC, Design Division, Department of Mechanical Engineering, MIT, 1964. [24] Gordon, SIAM J. Numer. Anal. 8 pp 158– (1971) [25] Gordon, Numer. Math. 21 pp 109– (1973) [26] Gordon, Int. j. numer. methods eng. 7 pp 461– (1973) [27] Marshall, J. Inst. Math. Appl. 12 pp 355– (1973) [28] Frey, J. Inst. Math. Appl. 20 pp 191– (1977) [29] Hall, J. Inst. Math. Appl. 21 pp 237– (1978) [30] Hall, J. Math. Mech. 19 pp 1– (1969) [31] Cavendish, Int. j. numer. methods eng. 20 pp 241– (1984) [32] , and , ’Triangular elements in plate bending–Conforming and non-conforming solutions’. Proc. Conf. on Matrix Methods in Structural Mechanics., Dayton, Ohio, AFFDL 66280, 1965, 547-576. [33] Wood, Int. j. numer. methods eng. 26 pp 489– (1988) [34] and , Theory of Elasticity, 3rd edn, McGraw-Hill, New York, 1970, pp. 258-261. [35] and , Graphics-oriented Interactive Finite-Element Time-sharing System GIFTS 5, University of Arizona, Tueson, AZ, 1984. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.