# zbMATH — the first resource for mathematics

Totally orthogonal Bernstein algebras. (English) Zbl 0724.17026
Let K be a infinite field of characteristic not 2. A finite dimensional, commutative, nonassociative k-algebra A, with a nonzero homomorphism w: $$A\to K$$ is called a Bernstein algebra if $$(x^ 2)^ 2=w^ 2(x)x^ 2$$ for all $$x\in A$$. Such algebras always have an idempotent e such that $$w(e)=1$$. In this case there is a decomposition of A, say $$A=Ke\oplus U\oplus V$$, where $$U=\{x\in Ker w$$; $$ex= x\}$$ and $$V=\{x\in Ker W$$; $$ex=0\}.$$
In this note we show by an example that the concept of orthogonal Bernstein algebra depends on the choice of the idempotent in the Peirce decomposition. We introduce the concept of total orthogonality and give necessary and sufficient conditions for this condition. We prove also that for Jordan-Bernstein algebras, dim $$U^ 3$$ is an invariant.

##### MSC:
 17D92 Genetic algebras
Full Text:
##### References:
 [1] M. T. Alcalde, R. Baeza andC. Burgue?o, Autour des alg?bres de Bernstein. Arch. Math.53, 134-140 (1989). · Zbl 0648.17011 [2] P. Holgate, Genetic algebras satisfying Bernstein’s satationarity principle. J. London Math. Soc. (2)9, 612-623 (1975). · Zbl 0365.92025 [3] Yu. I. Ljubich, Bernstein algebras (Russian). Uspekhi Mat. Nauk. 6 (198)32, 261-262 (1977). [4] C.Mallol et A.Micali, Sur les algebras de Bernstein III. Universit? de Montpellier II, preprint. [5] A.W?rz-Busekros, Algebras in Genetic. Lecture Notes in Biomathematics36, Berlin-Heidelberg-New York 1980. [6] A. W?rz-Busekros, Bernstein algebras. Arch. Math.48, 388-398 (1987). · Zbl 0597.17014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.