zbMATH — the first resource for mathematics

Existence of ad-nilpotent elements and simple Lie algebras with subalgebras of codimension one. (English) Zbl 0723.17016
Let \({\mathcal L}\) be a finite dimensional Lie algebra over a field of prime characteristic. Let \({\mathcal D}\) be a nonzero nilpotent derivation of \({\mathcal L}\) and \(\delta\in Ker {\mathcal D}\). It is proved that ad \(\delta\) is nilpotent provided ad \(\delta| Ker {\mathcal D}\) is nilpotent. This result allows to generalize slightly some results of A. A. Premet established earlier for restricted Lie algebras to arbitrary finite dimensional Lie algebras over perfect fields.
The author shows that the following statements are equivalent: (1) Any Lie algebra over a perfect field \({\mathcal F}\) contains an ad-nilpotent element. (2) There are no simple Lie algebras over \({\mathcal F}\) all of whose subalgebras are abelian. This implies that any Lie algebra over a perfect field of type \((C_ 1)\) contains an ad-nilpotent element.
The proofs are based on Premet’s theorem stating that any two toral Cartan subalgebras of a finite dimensional restricted Lie algebra over an algebraically closed field of characteristic \(p>0\) have the same (minimal possible) dimension [see A. A. Premet, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk 1986, No.1, 9-14 (1986; Zbl 0597.17007)]. As a consequence the author gives an easy proof of the fact that Zassenhaus algebras and \({\mathfrak sl}(2)\) are the only simple Lie algebras with a subalgebra of codimension 1 provided the ground field is perfect and of characteristic \(\neq 2\).

17B50 Modular Lie (super)algebras
17B05 Structure theory for Lie algebras and superalgebras
Full Text: DOI
[1] Ralph K. Amayo, Quasi-ideals of Lie algebras. I, Proc. London Math. Soc. (3) 33 (1976), no. 1, 28 – 36. , https://doi.org/10.1112/plms/s3-33.1.28 Ralph K. Amayo, Quasi-ideals of Lie algebras. II, Proc. London Math. Soc. (3) 33 (1976), no. 1, 37 – 64. · Zbl 0337.17005 · doi:10.1112/plms/s3-33.1.37 · doi.org
[2] Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350 – 355. · Zbl 0166.04103 · doi:10.1007/BF01109800 · doi.org
[3] G. M. Benkart and I. M. Isaacs, On the existence of ad-nilpotent elements, Proc. Amer. Math. Soc. 63 (1977), no. 1, 39 – 40. · Zbl 0359.17008
[4] G. M. Benkart, I. M. Isaacs, and J. M. Osborn, Lie algebras with self-centralizing ad-nilpotent elements, J. Algebra 57 (1979), no. 2, 279 – 309. · Zbl 0402.17013 · doi:10.1016/0021-8693(79)90225-4 · doi.org
[5] A. S. Dzhumadil\(^{\prime}\)daev, Simple Lie algebras with a subalgebra of codimension one, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 193 – 194 (Russian).
[6] Rolf Farnsteiner, On \?\?-semisimple Lie algebras, J. Algebra 83 (1983), no. 2, 510 – 519. · Zbl 0521.17003 · doi:10.1016/0021-8693(83)90236-3 · doi.org
[7] Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker, Inc., New York, 1988. · Zbl 0648.17003
[8] Karl Heinrich Hofmann, Lie algebras with subalgebras of co-dimension one, Illinois J. Math. 9 (1965), 636 – 643. · Zbl 0142.27601
[9] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[10] Masayoshi Nagata, Field theory, Marcel Dekker, Inc., New York-Basel, 1977. Pure and Applied Mathematics, No. 40. · Zbl 0366.12001
[11] A. A. Premet, Toroidal Cartan subalgebras of Lie \?-algebras, and anisotropic Lie algebras of positive characteristic, Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1 (1986), 9 – 14, 124 (Russian, with English summary). · Zbl 0597.17007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.