zbMATH — the first resource for mathematics

Pseudospectral simulation of compressible magnetohydrodynamic turbulence. (English) Zbl 0722.76056
Summary: We describe a conservative pseudospectral algorithm for the numerical simulation of fully compressible, dissipative magnetohydrodynamic turbulence in two spatial dimensions. Fourier collocation is employed in the two Cartesian spatial coordinates, with an isotropic truncation at each time-level. Time is explicitly discretized with a second-order Runge-Kutta scheme. We discuss conservation of material integrals and simulation of shocks. We also present results of several turbulence simulations. The results are compared with incompressible results computed by another algorithm. For the selective decay problem, the compressible results appear to converge to the incompressible case as \(\beta\to \infty\).

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76F99 Turbulence
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
Full Text: DOI
[1] Passot, T.; Pouquet, A., Numerical simulation of compressible homogeneous flows in the turbulent regime, J. fluid mech., 181, 441-466, (1987) · Zbl 0633.76054
[2] Erlebacher, G.; Hussaini, M.Y.; Speziale, C.G.; Zang, T.A., Toward the large-eddy simulation of compressible turbulent flows, ICASE rept. 87-20, (1987) · Zbl 0775.76059
[3] Grappin, R.; Leorat, J.; Londrillo, P., Onset and development of turbulence in two-dimensional periodic share flows, J. fluid mech., 195, 239-256, (1988)
[4] Dahlburg, R.B.; Picone, J.M.; Karpen, J.T., Growth of correlation in compressible two-dimensional magnetofluid turbulence, J. geophys. res., 93, 2527-2532, (1988)
[5] Dahlburg, R.B.; Picone, J.M.; Karpen, J.T., Compressible dynamic alignment, (), 95-98
[6] Dahlburg, R.B.; Picone, J.M., Evolution of the orszag-Tang vortex system in a compressible medium. I. initial average subsonic flow, Phys. fluids, B 1, 2153-2171, (1989)
[7] Fyfe, D.; Joyce, G.; Montgomery, D., Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics, J. plasma phys., 17, 317-335, (1977)
[8] Meneguzzi, M.; Frisch, U.; Pouquet, A., Helical and nonhelical turbulent dynamos, Phys. rev. lett., 47, 1060-1064, (1981)
[9] Dahlburg, J.P.; Montgomery, D.; Doolen, G.D.; Turner, L., Driven, steady-state RFP computations, J. plasma phys., 40, 39-68, (1988)
[10] Shebalin, J.V.; Montgomery, D., Turbulent magnetohydrodynamic density fluctuations, J. plasma phys., 39, 339-367, (1988)
[11] Dahlburg, R.B.; Zang, T.A.; Montgomery, D.; Hussaini, M.Y., Viscous, resistive magnetohydrodynamic stability computed by spectral techniques, (), 5798-5802
[12] Schnack, D.; Killeen, J., Nonlinear, two-dimensional magnetohydrodynamic calculations, J. comp. phys., 35, 110-145, (1980) · Zbl 0428.76106
[13] Temperton, C., Self-sorting mixed-radix fast Fourier transforms, J. comp. phys., 52, 1-23, (1983) · Zbl 0513.65092
[14] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer New York · Zbl 0658.76001
[15] Dahlburg, R.B., Evolution of Mean square magnetic vector potential in compressible, two dimensional magnetofluid turbulence, NRL memo. rep. 6012, (1987)
[16] Hussaini, M.Y.; Kopriva, D.A.; Salas, M.D.; Zang, T.A., Spectral methods for the Euler equations, part 1: Fourier methods and shock-capturing, Aiaa j., 23, 64-70, (1985) · Zbl 0554.76060
[17] Liepmann, H.W.; Roshko, A., Elements of gasdynamics, (1957), Wiley New York · Zbl 0078.39901
[18] Matthaeus, W.H.; Montgomery, D., Selective decay hypothesis at high mechanical and magnetic Reynolds numbers, Ann. N.Y. acad. sci., 357, 203-222, (1980) · Zbl 0513.76047
[19] Hasegawa, A., Self-organization processes in continuous media, Adv. in phys., 34, 1-42, (1985)
[20] Dahlburg, R.B.; Dahlburg, J.P.; Mariska, J.T., Helical magnetohydrodynamic turbulence and the coronal heating problem, Astron. astrophys., 198, 300-310, (1988) · Zbl 0667.76070
[21] Parker, E.N., Magnetic neutral sheets in evolving fields. I. general theory, Astrophys. J., 264, 635-641, (1983)
[22] Orszag, S.A.; Tang, C.-M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J. fluid mech., 90, 129-143, (1979)
[23] Picone, J.M.; Dahlburg, R.B., Evolution of the orszag-Tang vortex system in a compressible medium, I. supersonic flow, phys. fluids B, (1990), submitted. · Zbl 0722.76056
[24] Theobald, M.L.; Montgomery, D.; Doolen, G.D.; Dahlburg, J.P., Sawtooth oscillations about helical current channels, Phys. fluids, B 1, 766-773, (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.