×

zbMATH — the first resource for mathematics

A three-dimensional pseudo-spectral algorithm for the computaion of convection in a rotating annulus. (English) Zbl 0722.76050
Summary: We present a three-dimensional Chebyshev-Fourier pseudospectral algorithm for the computation of the Navier-Stokes equations of an incompressible fluid in a rotating annulus. The algorithm integrates the time-dependent equations in primitive variables with a second order accurate time stepping scheme. The incompressibility constraint is maintained with an influence matrix technique. Rossby waves are obtained for different values of the governing parameters.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hide, R., An experimental study of thermal convection in a rotating fluid, Philos. trans. roy. soc. London ser., A 250, 441-478, (1958)
[2] Williams, G.P., Numerical integration of the three-dimensional Navier-Stokes equations for incompressible flow, J. fluid mech., 37, 727-750, (1969) · Zbl 0183.55104
[3] Quon, C., A mixed spectral and finite-difference model to study baroclinic annulus waves, J. comput. phys., 20, 442-479, (1976) · Zbl 0358.76073
[4] Randriamampianina, A.; Bontoux, P.; Roux, B., Ecoulements induits par la force gravifique dans une cavité cylindrique en rotation, Internat. J. heat mass transf., 30, 1275-1292, (1987)
[5] Le Quéré, P.; Pécheux, J., Multiple transitions in axisymmetric annulus convection, J. fluid mech., 206, 517-544, (1989)
[6] Vanel, J.M.; Bontoux, P.; Peyret, R., A pseudo-spectral solution of vorticity-stream function equations using the influence matrix technique, (), 463-475 · Zbl 0606.76030
[7] Haidvogel, D.; Zang, T., The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J. comput. phys., 30, 167-180, (1979) · Zbl 0397.65077
[8] Canuto, C.; Hussaini, M.Y.; Quarteroni, A; Zang, T., Spectral methods in fluid dynamics, (1988), Springer Berlin · Zbl 0658.76001
[9] Kleiser, L.; Schumann, U., Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows, (), 165-173 · Zbl 0463.76020
[10] Le Quéré, P.; de Roquefort, T.Alziary, Sur une méthode spectrale semi-implicite pour la résolution des équations de Navier-Stokes d’un écoulement bidimensionnel visqueux incompressible, C.R. acad. sci. Paris, serie II, 294, 941-944, (1982) · Zbl 0489.76037
[11] Le Quéré, P.; de Roquefort, T.Alziary, Computation of natural convection in 2-D cavities with Chebyshev polynomials, J. comput. phys., 57, 210-228, (1985) · Zbl 0585.76128
[12] Haldenwang, P., ()
[13] Le Quéré, P., ()
[14] Tuckermann, L.S., Divergence-free velocity fields in non-periodic geometries, J. comput. phys., 80, 403-441, (1989) · Zbl 0668.76027
[15] P. Le Quéré, Contribution to the GAMM-Workshop with a pseudo-spectral Chebyshev algorithm on a staggered grid, Notes Numerical Fluid Mechanics (Vieweg, Braunschweig) in press. · Zbl 0715.76076
[16] Bernardi, C.; Maday, Y., A collocation method over staggered grids for the Stokes problem, Internat, J. numer. methods fluids, 8, 537-557, (1988) · Zbl 0665.76037
[17] Williams, G.P., Baroclinic annulus waves, J. fluid mech., 49, 417-449, (1971) · Zbl 0239.76109
[18] Fein, J.S., An experimental study of the effects of the upper boundary condition on the thermal convection in a rotating differentially heated cylindrical annulus of water, Geophys. fluid dyn., 5, 213-248, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.