×

zbMATH — the first resource for mathematics

Micromechanics-based surrogate models for the response of composites: a critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks. (English) Zbl 07212908
Summary: Although being a popular approach for the modeling of laminated composites, mesoscale constitutive models often struggle to represent material response for arbitrary load cases. A better alternative in terms of accuracy is to use the \(FE^2\) technique to upscale microscopic material behavior without loss of generality, but the associated computational effort can be extreme. It is therefore interesting to explore alternative surrogate modeling strategies that maintain as much of the fidelity of \(FE^2\) as possible while still being computationally efficient. In this work, three surrogate modeling approaches are compared in terms of accuracy, efficiency and calibration effort: the state-of-the-art mesoscopic plasticity model by
M. Vogler et al. [“Modeling the inelastic deformation and fracture of polymer composites – Part I: Plasticity model”, Mech. Mater. 59, 50–64 (2013; doi:10.1016/j.mechmat.2012.12.002)], regularized feed-forward neural networks and hyper-reduced-order models obtained by combining the Proper Orthogonal Decomposition (POD) and Empirical Cubature Method (ECM) techniques. Training datasets are obtained from a Representative Volume Element (RVE) model of the composite microstructure with a number of randomly-distributed linear-elastic fibers surrounded by a matrix with pressure-dependent plasticity. The approaches are evaluated with a comprehensive set of numerical tests comprising pure stress cases and three different stress combinations relevant in the design of laminated composites. The models are assessed on their ability to accurately reproduce the training cases as well as on how well they are able to predict unseen stress combinations. Gains in execution time are compared by using the trained surrogates in the FE\(^2\) model of an interlaminar shear test.

MSC:
74 Mechanics of deformable solids
Software:
Adam
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alfano, G.; Sacco, E., Combining interface damage and friction in a cohesive-zone model, Int. J. Numer. Methods Eng., 68, 542-582 (2006) · Zbl 1275.74021
[2] Bengio, Y.; Courville, A.; Vincent, P., Representation learning: a review and new perspectives, IEEE Trans. Pattern Anal. Mach. Intell., 35, 8, 17981828 (2013)
[3] Bishop, C. M., Pattern Recognition and Machine Learning (2006), Springer · Zbl 1107.68072
[4] Breiman, L., Bagging predictors, Mach. Learn., 24, 123-140 (1996) · Zbl 0858.68080
[5] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[6] Chevreuil, M.; Nouy, A., Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics, Int. J. Numer. Methods Eng., 89, 241-268 (2012) · Zbl 1242.74028
[7] Ciutacu, S.; Budrugeac, P.; Niculae, I., Accelerated thermal aging of glass-reinforced epoxy resin under oxygen pressure, Polym. Degrad. Stabil., 31, 365-372 (1991)
[8] Cox, B. N.; Yang, Q. D., In quest of virtual tests for structural composites, Science, 314, 5802, 1102-1107 (2006)
[9] Cybenko, G., Approximation by superpositions of a sigmoidal function, Math Contr. Signals Syst., 2, 303-314 (1989) · Zbl 0679.94019
[10] Gagani, A.; Fan, Y.; Mulian, A. H.; Echtermeyer, A. T., Micromechanical modeling of anisotropic water diffusion in glass fiber epoxy reinforced composites, J. Compos. Mater., 1-15 (2017)
[11] Geers, M. G.D.; Kouznetsova, V. G.; Brekelmans, W. A.M., Multi-scale computational homogenization: trends and challenges, J. Comput. Appl. Math., 234, 2175-2182 (2010) · Zbl 1402.74107
[12] Ghaboussi, J.; Garrett, J. H.; Wu, X., Knowledge-based modeling of material behavior with neural networks, J. Eng. Mech., 117, 132-153 (1991)
[13] Ghaboussi, J.; Pecknold, D. A.; Zhang, M.; Haj-ali, R. M., Autoprogressive training of neural network constitutive models, Int. J. Numer. Methods Eng., 42, 105-126 (1998) · Zbl 0915.73075
[14] Ghavamian, F.; Simone, A., Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network, Comput. Methods Appl. Math., 357, 23p (2019) · Zbl 1442.65142
[15] Ghavamian, F.; Tiso, P.; Simone, A., POD-DEIM model order reduction for strain-softening viscoplasticity, Comput. Methods Appl. Math., 317, 458-479 (2017) · Zbl 1439.74073
[16] Glorot, X.; Bengio, Y., Understanding the difficulty of training deep feedforward neural networks, (In: Proceedings AISTATS, 9 (2010)), 249-256
[17] Goury, O.; Amsallem, D.; Bordas, S. P.A.; Liu, W. K.; Kerfriden, P., Automatised selection of load paths to construct reduced-order models in computational damage micromechanics: from dissipation-driven random selection to Bayesian optimization, Comput. Mech., 58, 213-234 (2016) · Zbl 1398.74053
[18] Grammatikos, S. A.; Evernden, M.; Mitchels, J.; Zafari, B.; Mottram, J. T.; Papanicolaou, G. C., On the response to hygrothermal ageing of pultruded FRPs used in the civil engineering sector, Mater. Des., 96, 283-295 (2016)
[19] Hernández, J. A.; Caicedo, M. A.; Ferrer, A., Dimensional hyper-reduction of nonlinear finite element models via empirical cubature, Comput. Methods Appl. Math., 313, 687-722 (2017) · Zbl 1439.74419
[20] Jive - Software development kit for advanced numerical simulations (2019)
[21] Kerfriden, P.; Gosselet, P.; Adhikari, S.; Bordas, S. P.A., Bridging proper orthogonal decomposition methods and augmented Newton-krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems, Comput. Methods Appl. Math., 200, 850-866 (2011) · Zbl 1225.74092
[22] Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A. F., Comprehensive review of neural network-based prediction intervals and new advances, IEEE Trans. Neur. Netw. Learn Syst., 22, 1341-1356 (2011)
[23] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv e-prints, arXiv:1412.6980.
[24] Kouznetsova, V.; Brekelmans, W. A.M.; Baaijens, F. P.T., An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 37-48 (2001) · Zbl 1005.74018
[25] Krairi, A.; Doghri, I., A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage, Int. J. Plast., 60, 163-181 (2014)
[26] Le, B. A.; Yvonnet, J.; He, Q. C., Computational homogenization of nonlinear elastic materials using neural networks, Int. J. Numer. Methods Eng., 104, 1061-1084 (2015) · Zbl 1352.74266
[27] Lefik, M.; Boso, D. P.; Schrefler, B. A., Artificial neural networks in numerical modelling of composites, Comput. Methods Appl. Math., 198, 1785-1804 (2009) · Zbl 1227.74052
[28] Liu, Z.; Wu, C. T.; Koishi, M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials, Comput. Methods Appl. Math., 345, 1138-1168 (2019) · Zbl 1440.74340
[29] Lu, X.; Giovanis, D. G.; Yvonnet, J.; Papadopoulos, V.; Detrez, F.; Bai, J., A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput. Mech., 64, 2, 307-321 (2018) · Zbl 07095666
[30] Melro, A. R.; Camanho, P. P.; Andrade Pires, F. M.; Pinho, S. T., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I - constitutive modelling, Int. J. Solid Struct., 50, 1897-1905 (2013)
[31] Miehe, C.; Schotte, J.; Schröder, J., Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains, Comput. Mater. Sci., 16, 372-382 (1999)
[32] Naya, F.; González, C.; Lopes, C. S.; van der Veen, S.; Pons, F., Computational micromechanics of the transverse and shear behaviour of unidirectional fiber reinforced polymers including environmental effects, Compos. Part A-Appl S, 92, 146-157 (2016)
[33] Nguyen, V. P.; Lloberas-Valls, O.; Stroeven, M.; Sluys, L. J., Computational homogenization for multiscale crack modelling. implementation and computational aspects, Int. J. Numer. Methods Eng., 89, 192-226 (2012) · Zbl 1242.74085
[34] Pimenta, S.; Gutkin, R.; Pinho, S. T.; Robinson, P., A micromechanical model for kink-band formation: Part I - experimental study and numerical modelling, Compos. Sci. Technol., 69, 7-8, 948-955 (2009)
[35] Poulain, X.; Benzerga, A. A.; Goldberg, R. K., Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime, Int. J. Plast., 62, 138-161 (2014)
[36] Qian, C.; Westphal, T.; Nijssen, R. P.L., Micro-mechanical fatigue modelling of unidirectional glass fibre reinforced polymer composites, Comput. Mater. Sci., 69, 62-72 (2013)
[37] Rocha, I. B.C. M.; van der Meer, F. P.; Raijmaekers, S.; Lahuerta, F.; Nijssen, R. P.L.; Mikkelsen, L. P.; Sluys, L. J., A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites, Eur. J. Mech. Solid., 73, 407-419 (2019)
[38] Rocha, I. B.C. M.; van der Meer, F. P.; Sluys, L. J., Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modeling, Comput. Methods Appl. Math., 345, 644-670 (2019) · Zbl 1440.74259
[39] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, A.; Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929-1958 (2014) · Zbl 1318.68153
[40] Turon, A.; Camanho, P. P.; Costa, J.; Dávila, C. G., A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mech. Mater., 38, 1072-1089 (2006)
[41] van der Meer, F. P., Micromechanical validation of a mesomodel for plasticity in composites, Eur. J. Mech. Solid., 60, 58-69 (2016) · Zbl 1406.74540
[42] van der Meer, F. P.; Sluys, L. J., Continuum models for the analysis of progressive failure in composite laminates, J. Compos. Mater., 43, 20, 2131-2156 (2009)
[43] van Tuijl, R. A.; Remmers, J. J.C.; Geers, M. G.D., Integration efficiency for model reduction in micro-mechanical analyses, Comput. Mech., 1-19 (2017)
[44] Vogler, M.; Rolfer, R.; Camanho, P. P., Modeling the inelastic deformation and fracture of polymer composites - Part I: plasticity model, Mech. Mater., 59, 50-64 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.