×

Mass-radius ratio bound for horizonless charged compact object in higher dimensions. (English) Zbl 1435.83162

Summary: In this paper, the mass-radius ratio bound for horizonless compact object in higher dimensions is derived. Instead of considering the various matter conditions of the compact objects following Andreasson’s approach, we focus on the conditions for the existence of dynamical compact objects. The radius of the outermost circular null geodesic is derived in higher dimensions, which is the lower bound on the minimally allowed radius of dynamically stable horizonless charged compact object. Subsequently, the upper bound on the mass-radius ratio is obtained. Our results are strongly dependent on the dimensions. What’s more significant is that the developed bound is proven always to be stronger than the result following Andreasson’s approach in higher dimensions.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aasi, J., Advanced LIGO, Class. Quantum Gravity, 32, Article 074001 pp. (2015)
[2] Wald, R., General Relativity (1984), University of Chicago Press · Zbl 0549.53001
[3] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev., 116, 1027 (1959) · Zbl 0092.20802
[4] Mak, M. K.; Dobson, P. N.; Harko, T., Maximum mass radius ratio for compact general relativistic objects in Schwarzschild-de Sitter geometry, Mod. Phys. Lett. A, 15, 2153 (2000) · Zbl 1010.83024
[5] Boehmer, C. G.; Harko, T., Does the cosmological constant imply the existence of a minimum mass?, Phys. Lett. B, 630, 73 (2005)
[6] Balaguera-Antolinez, A.; Boehmer, C. G.; Nowakowski, M., On astrophysical bounds of the cosmological constant, Int. J. Mod. Phys. D, 14, 1507 (2005) · Zbl 1080.85009
[7] Karageorgis, P.; Stalker, J. G., Sharp bounds on 2m/r for static spherical objects, Class. Quantum Gravity, 25, Article 195021 pp. (2008) · Zbl 1151.83016
[8] Andreasson, H.; Boehmer, C. G., Bounds on 2m/r for static objects with a positive cosmological constant, Class. Quantum Gravity, 26, Article 195007 pp. (2009) · Zbl 1178.83011
[9] Mak, M. K.; Dobson, P. N.; Harko, T., Maximum mass radius ratios for charged compact general relativistic objects, Europhys. Lett., 55, 310 (2001)
[10] Boehmer, C. G.; Harko, T., Minimum mass-radius ratio for charged gravitational objects, Gen. Relativ. Gravit., 39, 757 (2007) · Zbl 1157.83327
[11] Andreasson, H., Sharp bounds on the critical stability radius for relativistic charged spheres, Commun. Math. Phys., 288, 715 (2009) · Zbl 1175.83015
[12] Andreasson, H.; Boehmer, C. G.; Mussa, A., Bounds on M/R for charged objects with positive cosmological constant, Class. Quantum Gravity, 29, Article 095012 pp. (2012) · Zbl 1246.83086
[13] Ponce de Leon, J.; Cruz, N., Hydrostatic equilibrium of a perfect fluid sphere with exterior higher dimensional Schwarzschild space-time, Gen. Relativ. Gravit., 32, 1207 (2000) · Zbl 0976.83056
[14] Wright, M., Buchdahl type inequalities in d-dimensions, Class. Quantum Gravity, 32, Article 215005 pp. (2015) · Zbl 1329.83177
[15] Harko, T.; Mak, M. K., Anisotropic charged fluid spheres in D space-time dimensions, J. Math. Phys., 41, 4752 (2000) · Zbl 0977.83077
[16] Wright, M., Buchdahl’s inequality in five dimensional Gauss-Bonnet gravity, Gen. Relativ. Gravit., 48, 93 (2016) · Zbl 1386.83121
[17] Kareeso, P.; Burikham, P.; Harko, T., Mass-radius ratio bounds for compact objects in Lorentz-violating dRGT massive gravity theory, Eur. Phys. J. C, 78, 941 (2018)
[18] Cardoso, V.; Miranda, A. S.; Berti, E.; Witek, H.; Zanchin, V. T., Geodesic stability, Lyapunov exponents, and quasinormal modes, Phys. Rev. D, 79, Article 064016 pp. (2009)
[19] Decanini, Y.; Folacci, A.; Raffaelli, B., Unstable circular null geodesics of static spherically symmetric black holes, Regge poles and quasinormal frequencies, Phys. Rev. D, 81, Article 104039 pp. (2010)
[20] Goebel, C. J., Comments on the “vibrations” of a black hole, Astrophys. J., 172, L95 (1972)
[21] Berti, E., A black-hole primer: particles, waves, critical phenomena and superradiant instabilities
[22] Cunha, P. V.P.; Berti, E.; Herdeiro, C. A.R., Light-ring stability for ultracompact objects, Phys. Rev. Lett., 119, Article 251102 pp. (2017)
[23] Hod, S., On the number of light rings in curved spacetimes of ultra-compact objects, Phys. Lett. B, 776, 1 (2018) · Zbl 1380.83063
[24] Koga, Y.; Harada, T., Stability of null orbits on photon spheres and photon surfaces, Phys. Rev. D, 100, Article 064040 pp. (2019)
[25] Cvetic, M.; Gibbons, G. W.; Pope, C. N., Photon spheres and sonic horizons in black holes from supergravity and other theories, Phys. Rev. D, 94, Article 106005 pp. (2016)
[26] Keir, J., Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars, Class. Quantum Gravity, 33, Article 135009 pp. (2016) · Zbl 1346.83013
[27] Cardoso, V.; Crispino, L. C.B.; Macedo, C. F.B.; Okawa, H.; Pani, P., Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects, Phys. Rev. D, 90, Article 044069 pp. (2014)
[28] Cunha, P. V.P.; Herdeiro, C. A.R.; Radu, E., Fundamental photon orbits: black hole shadows and spacetime instabilities, Phys. Rev. D, 96, Article 024039 pp. (2017)
[29] Hod, S., Lower bound on the compactness of isotropic ultracompact objects, Phys. Rev. D, 97, Article 084018 pp. (2018)
[30] Peng, Y., Upper bound on the radii of regular ultra-compact star photonspheres, Phys. Lett. B, 790, 396 (2019)
[31] Hod, S., Upper bound on the radii of black-hole photonspheres, Phys. Lett. B, 727, 345 (2013) · Zbl 1331.83042
[32] Peng, Y., On instabilities of scalar hairy regular compact reflecting stars, J. High Energy Phys., 10, Article 185 pp. (2018) · Zbl 1402.83061
[33] Hod, S., Hairy black holes and null circular geodesics, Phys. Rev. D, 84, Article 124030 pp. (2011)
[34] Hod, S., Self-gravitating field configurations: the role of the energy-momentum trace, Phys. Lett. B, 739, 383 (2014) · Zbl 1306.83007
[35] Hod, S., Upper bound on the gravitational masses of stable spatially regular charged compact objects, Phys. Rev. D, 98, Article 064014 pp. (2018)
[36] Papnoi, U.; Atamurotov, F.; Ghosh, S. G.; Ahmedov, B., Shadow of five-dimensional rotating Myers-Perry black hole, Phys. Rev. D, 90, Article 024073 pp. (2014)
[37] Chakraborty, S.; SenGupta, S., Strong gravitational lensing — a probe for extra dimensions and Kalb-Ramond field, J. Cosmol. Astropart. Phys., 1707, Article 045 pp. (2017) · Zbl 1515.83012
[38] Hertog, T.; Lemmens, T.; Vercnocke, B., Imaging higher dimensional black objects, Phys. Rev. D, 100, Article 046011 pp. (2019)
[39] Konoplya, R. A.; Zhidenko, A., Instability of higher dimensional charged black holes in the de-Sitter world, Phys. Rev. Lett., 103, Article 161101 pp. (2009)
[40] Konoplya, R. A.; Zhidenko, A., (In)stability of D-dimensional black holes in Gauss-Bonnet theory, Phys. Rev. D, 77, Article 104004 pp. (2008)
[41] Cardoso, V.; Lemos, M.; Marques, M., On the instability of Reissner-Nordstrom black holes in de Sitter backgrounds, Phys. Rev. D, 80, Article 127502 pp. (2009)
[42] Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K., Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition, Eur. Phys. J. C, 76, 676 (2016)
[43] Liu, H.; Tang, Z.; Destounis, K.; Wang, B.; Papantonopoulos, E.; Zhang, H., Strong cosmic censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime, J. High Energy Phys., 03, Article 187 pp. (2019) · Zbl 1414.83044
[44] Tangherlini, F. R., Schwarzschild field in n dimensions and the dimensionality of space problem, Il Nuovo Cimento (1955-1965), 27, 636 (1963) · Zbl 0114.21302
[45] Eperon, F. C.; Reall, H. S.; Santos, J. E., Instability of supersymmetric microstate geometries, J. High Energy Phys., 10, Article 031 pp. (2016) · Zbl 1390.83238
[46] Eperon, F. C., Geodesics in supersymmetric microstate geometries, Class. Quantum Gravity, 34, Article 165003 pp. (2017) · Zbl 1371.83178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.