×

zbMATH — the first resource for mathematics

The spatial structure and statistical properties of homogeneous turbulence. (English) Zbl 0721.76036
Summary: A direct numerical simulation at resolution \(240^ 3\) is used to obtain a statistically stationary three-dimensional homogeneous and isotropic turbulent field at a Reynolds number around 1000 \((R_{\lambda}\approx 150)\). The energy spectrum displays an inertial subrange. The velocity derivative distribution, known to be strongly non-Gaussian, is found to be close to, but not, exponential. The nth-order moments of this distribution, as well as the velocity structure functions, do not scale with n as predicted by intermittency models. Visualization of the flow confirms the previous finding that the strongest vorticity is organized in very elongated thin tubes. The width of these tubes is of the order of a few dissipation scales, while their length can reach the integral scale of the flow.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76M99 Basic methods in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112084001750 · Zbl 0561.76059
[2] DOI: 10.1063/1.863957 · Zbl 0536.76034
[3] DOI: 10.1017/S0022112084001968 · Zbl 0547.76093
[4] Vieillefosse, Physica 125A pp 150– (1984) · Zbl 0599.76040
[5] Castaing, Physica D 46 pp 177– (1990)
[6] Vieillefosse, J. Phys. Paris 43 pp 837– (1982)
[7] DOI: 10.1017/S0022112088003015
[8] DOI: 10.1017/S002211207000174X
[9] DOI: 10.1017/S0022112083001159 · Zbl 0517.76033
[10] Benzi, Europhys. Lett. 3 pp 811– (1987)
[11] DOI: 10.1063/1.1691966
[12] DOI: 10.1175/1520-0469(1981)038 2.0.CO;2
[13] DOI: 10.1017/S0022112078001287 · Zbl 0379.76048
[14] DOI: 10.1017/S002211208100181X · Zbl 0476.76051
[15] DOI: 10.1063/1.866513
[16] DOI: 10.1038/344226a0
[17] DOI: 10.1017/S0022112084000513
[18] DOI: 10.1007/BF01065179 · Zbl 0667.76077
[19] DOI: 10.1017/S0022112078002347 · Zbl 0398.76041
[20] Legras, Europhys. Lett. 5 pp 37– (1988)
[21] DOI: 10.1103/PhysRevLett.65.575 · Zbl 1050.76546
[22] DOI: 10.1017/S002211207400070X · Zbl 0273.76037
[23] DOI: 10.1017/S0022112062000518 · Zbl 0112.42003
[24] Kolmogorov, CR Acad. Sci. URSS 30 pp 301– (1941)
[25] Kerr, J. Fluid Mech. 211 pp 309– (1990)
[26] DOI: 10.1017/S0022112085001136 · Zbl 0587.76080
[27] DOI: 10.1017/S0022112085001239 · Zbl 0585.76069
[28] DOI: 10.1017/S0022112078001846 · Zbl 0395.76051
[29] DOI: 10.1143/JPSJ.57.1532
[30] DOI: 10.1063/1.1693365 · Zbl 0225.76033
[31] DOI: 10.1103/PhysRevLett.28.76
[32] Orszag, Stud. Appl. Maths 51 pp 253– (1972) · Zbl 0282.65083
[33] DOI: 10.1017/S0022112062000506 · Zbl 0112.42002
[34] Novikov, Isv. Akad. Nauk SSSR Geophys. 3 pp 408– (1964)
[35] DOI: 10.1063/1.863407
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.