×

zbMATH — the first resource for mathematics

On strongly nonlinear vortex/wave interactions in boundary-layer transition. (English) Zbl 0721.76027
Summary: The interactions between longitudinal vortices and accompanying waves considered here are strongly nonlinear, in the sense that the mean-flow profile throughout the boundary layer is completely altered from its original undisturbed state. Nonlinear interactions between vortex flow and Tollmien-Schlichting waves are addressed first, and some analytical and computational properties are described. These include the possibility in the spatial-development case of a finite-distance break-up, inducing a singularity in the displacement thickness. Second, vortex/Rayleigh-wave nonlinear interactions are considered for the compressible boundary layer, along with certain special cases of interest and some possible solution properties. Both types, vortex/Tollmien-Schlichting and vortex/Rayleigh, are short-scale/long-scale interactions and they have potential applications to many flows at high Reynolds numbers. Their strongly nonlinear nature is believed to make them very relevant to fully fledged transition to turbulence.

MSC:
76D33 Waves for incompressible viscous fluids
76F99 Turbulence
76D25 Wakes and jets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112066000041 · Zbl 0151.41403 · doi:10.1017/S0022112066000041
[2] DOI: 10.1017/S0022112085000210 · doi:10.1017/S0022112085000210
[3] DOI: 10.1017/S0022112056000342 · Zbl 0073.20803 · doi:10.1017/S0022112056000342
[4] Brown, J. Fluid Mech. 219 pp 499– (1990)
[5] Malik, AIAA Paper 13 pp 87– (1987)
[6] Malik, NASA CR 13 pp 278– (1982)
[7] DOI: 10.1063/1.1706101 · doi:10.1063/1.1706101
[8] Zang, Theor. Comput. Fluid Dyn. 1 pp 41– (1989)
[9] Benney, Stud. Appl. Maths 80 pp 37– (1989) · Zbl 0668.76056 · doi:10.1002/sapm198980137
[10] Mack, AIAA J. 13 pp 278– (1975)
[11] Bennett, J. Fluid Mech. 223 pp 475– (1991)
[12] DOI: 10.1017/S0022112069000103 · Zbl 0179.57004 · doi:10.1017/S0022112069000103
[13] DOI: 10.1016/0096-3003(86)90114-1 · Zbl 0596.76032 · doi:10.1016/0096-3003(86)90114-1
[14] Bennett, J. Fluid Mech. 188 pp 445– (1987)
[15] Laurien, J. Fluid Mech. 199 pp 403– (1989)
[16] Wray, Proc. R. Soc. Lond. A 392 pp 393– (1984) · Zbl 0532.76035 · doi:10.1098/rspa.1984.0037
[17] DOI: 10.1017/S0022112084002603 · doi:10.1017/S0022112084002603
[18] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[19] DOI: 10.1017/S0022112084000100 · doi:10.1017/S0022112084000100
[20] DOI: 10.1017/S0022112060001171 · Zbl 0096.21103 · doi:10.1017/S0022112060001171
[21] DOI: 10.1017/S002211206000116X · Zbl 0096.21102 · doi:10.1017/S002211206000116X
[22] Hall, Eur. J. Mech. 8 pp 179– (1989)
[23] DOI: 10.1017/S0022112087001253 · doi:10.1017/S0022112087001253
[24] Hall, Proc. R. Soc. Lond. A 417 pp 255– (1988)
[25] Smith, Mathematika 36 pp 227– (1989)
[26] Hall, Stud. Appl. Maths 70 pp 91– (1984) · Zbl 0544.76034 · doi:10.1002/sapm198470291
[27] DOI: 10.1017/S0022112087001502 · Zbl 0624.76073 · doi:10.1017/S0022112087001502
[28] Hall, J. Fluid Mech. 204 pp 405– (1989)
[29] Smith, Proc. R. Soc. Lond. A 428 pp 255– (1990)
[30] Hall, Proc. R. Soc. Lond. A 415 pp 421– (1988)
[31] Smith, Proc. R. Soc. Lond. A 399 pp 25– (1985)
[32] DOI: 10.1017/S0022112088002137 · Zbl 0643.76041 · doi:10.1017/S0022112088002137
[33] DOI: 10.1017/S0022112083000968 · Zbl 0515.76040 · doi:10.1017/S0022112083000968
[34] Smith, Computers and Fluids 198 pp 127– (1991)
[35] DOI: 10.1017/S0022112089000078 · Zbl 0662.76082 · doi:10.1017/S0022112089000078
[36] Smith, Mathematika 35 pp 256– (1988)
[37] Hall, J. Inst. Maths Applics. 29 pp 173– (1982)
[38] DOI: 10.1017/S002211208600068X · Zbl 0608.76043 · doi:10.1017/S002211208600068X
[39] Smith, Mathematika 26 pp 187– (1979)
[40] Smith, Proc. R. Soc. Lond. A 368 pp 573– (1979)
[41] DOI: 10.1017/S0022112085003561 · Zbl 0604.76054 · doi:10.1017/S0022112085003561
[42] DOI: 10.1017/S0022112062001287 · Zbl 0116.19001 · doi:10.1017/S0022112062001287
[43] Peridier, J. Fluid Mech. 150 pp 441– (1991)
[44] DOI: 10.1017/S0022112071002635 · Zbl 0227.76071 · doi:10.1017/S0022112071002635
[45] Peridier, Rep. J. Fluid Mech. 150 pp 441– (1991)
[46] Cowley, J. Fluid Mech. 214 pp 17– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.