zbMATH — the first resource for mathematics

A probabilistic protocol for the assessment of transition and control. (English) Zbl 07202071
Summary: Transition to turbulence dramatically alters the properties of fluid flows. In most canonical shear flows, the laminar flow is linearly stable and a finite-amplitude perturbation is necessary to trigger transition. Controlling transition to turbulence is achieved via the broadening or narrowing of the basin of attraction of the laminar flow. In this paper, a novel methodology to assess the robustness of the laminar flow and the efficiency of control strategies is introduced. It relies on the statistical sampling of the phase-space neighbourhood around the laminar flow in order to assess the transition probability of perturbations as a function of their energy. This approach is applied to a canonical flow (plane Couette flow) and provides invaluable insight: in the presence of the chosen control, transition is significantly suppressed whereas plausible scalar indicators of the nonlinear stability of the flow, such as the edge-state energy, do not provide conclusive predictions. The methodology presented here in the context of transition to turbulence is applicable to any nonlinear system displaying finite-amplitude instability.
76 Fluid mechanics
Full Text: DOI
[1] Avila, K., Moxey, D., De Lozar, A., Avila, M., Barkley, D. & Hof, B.2011The onset of turbulence in pipe flow. Science333 (6039), 192-196.
[2] Baron, A. & Quadrio, M.1995Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res.55 (4), 311-326. · Zbl 0900.76165
[3] Brunton, S. L. & Noack, B. R.2015Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev.67 (5), 050801.
[4] Budanur, N. B., Marensi, E., Willis, A. P. & Hof, B.2020Upper edge of chaos and the energetics of transition in pipe flow. Phys. Rev. F5 (2), 023903.
[5] Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A.1988Spectral Methods in Fluid Dynamics. Springer. · Zbl 0658.76001
[6] Chantry, M. & Schneider, T. M.2014Studying edge geometry in transiently turbulent shear flows. J. Fluid Mech.747, 506-517.
[7] Chantry, M., Tuckerman, L. S. & Barkley, D.2017Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech.824, R1.
[8] Dauchot, O. & Daviaud, F.1995Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys. Fluids7 (2), 335-343.
[9] Duguet, Y., Brandt, L. & Larsson, B. R. J.2010Towards minimal perturbations in transitional plane Couette flow. Phys. Rev. E82 (2), 026316.
[10] Duguet, Y., Monokrousos, A., Brandt, L. & Henningson, D. S.2013Minimal transition thresholds in plane Couette flow. Phys. Fluids25 (8), 084103.
[11] Faranda, D., Lucarini, V., Manneville, P. & Wouters, J.2014On using extreme values to detect global stability thresholds in multi-stable systems: the case of transitional plane Couette flow. Chaos, Solitons Fractals64, 26-35. · Zbl 1348.76083
[12] Gibson, J. F.2014 Channelflow: A spectral Navier-Stokes simulator in \(\text{C}++\). Tech. Rep. U. New Hampshire, Channelflow.org.
[13] Hof, B., De Lozar, A., Avila, M., Tu, X. & Schneider, T. M.2010Eliminating turbulence in spatially intermittent flows. Science327 (5972), 1491-1494.
[14] Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B.2006Finite lifetime of turbulence in shear flows. Nature443 (7107), 59-62.
[15] Jung, W.-J., Mangiavacchi, N. & Akhavan, R.1992Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A4 (8), 1605-1607.
[16] Kasagi, N., Suzuki, Y. & Fukagata, K.2009Microelectromechanical systems-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech.41, 231-251. · Zbl 1157.76022
[17] Kawahara, G.2005Laminarization of minimal plane Couette flow: going beyond the basin of attraction of turbulence. Phys. Fluids17 (4), 041702. · Zbl 1187.76260
[18] Khapko, T., Kreilos, T., Schlatter, P., Duguet, Y., Eckhardt, B. & Henningson, D. S.2013Localized edge states in the asymptotic suction boundary layer. J. Fluid Mech.717, R6. · Zbl 1284.76106
[19] Khapko, T., Kreilos, T., Schlatter, P., Duguet, Y., Eckhardt, B. & Henningson, D. S.2016Edge states as mediators of bypass transition in boundary-layer flows. J. Fluid Mech.801, R2. · Zbl 1284.76106
[20] Kim, J. & Bewley, T. R.2007A linear systems approach to flow control. Annu. Rev. Fluid Mech.39, 383-417. · Zbl 1296.76074
[21] Marensi, E., Willis, A. P. & Kerswell, R. R.2019Stabilisation and drag reduction of pipe flows by flattening the base profile. J. Fluid Mech.863, 850-875. · Zbl 1421.76102
[22] Mellibovsky, F., Meseguer, A., Schneider, T. M. & Eckhardt, B.2009Transition in localized pipe flow turbulence. Phys. Rev. Lett.103 (5), 054502.
[23] Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J.2013How basin stability complements the linear-stability paradigm. Nat. Phys.9 (2), 89-92.
[24] Moehlis, J., Faisst, H. & Eckhardt, B.2004A low-dimensional model for turbulent shear flows. New J. Phys.6 (1), 56. · Zbl 1090.37059
[25] Olvera, D. & Kerswell, R. R.2017Optimizing energy growth as a tool for finding exact coherent structures. Phys. Rev. F2, 083902. · Zbl 1430.76288
[26] Pershin, A., Beaume, C. & Tobias, S. M.2019Dynamics of spatially localized states in transitional plane Couette flow. J. Fluid Mech.867, 414-437. · Zbl 1430.76224
[27] Pringle, C. C. T., Willis, A. P. & Kerswell, R. R.2012Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech.702, 415-443. · Zbl 1248.76075
[28] Quadrio, M.2011Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A369 (1940), 1428-1442.
[29] Quadrio, M. & Ricco, P.2004Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech.521, 251-271. · Zbl 1065.76121
[30] Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R.2014Designing a more nonlinearly stable laminar flow via boundary manipulation. J. Fluid Mech.738, R1.
[31] Schmiegel, A. & Eckhardt, B.1997Fractal stability border in plane Couette flow. Phys. Rev. Lett.79 (26), 5250.
[32] Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B.2008Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E78 (3), 037301.
[33] Shi, L., Avila, M. & Hof, B.2013Scale invariance at the onset of turbulence in Couette flow. Phys. Rev. Lett.110 (20), 204502.
[34] Skufca, J. D., Yorke, J. A. & Eckhardt, B.2006Edge of chaos in a parallel shear flow. Phys. Rev. Lett.96 (17), 174101.
[35] Spalart, P. R., Moser, R. D. & Rogers, M. M.1991Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comp. Phys.96 (2), 297-324. · Zbl 0726.76074
[36] Sreenivasan, K. R.1982Laminarescent, relaminarizing and retransitional flows. Acta Mechanica44, 1-48. · Zbl 0501.76045
[37] Stone, P. A., Roy, A., Larson, R. G., Waleffe, F. & Graham, M. D.2004Polymer drag reduction in exact coherent structures of plane shear flow. Phys. Fluids16 (9), 3470-3482. · Zbl 1187.76502
[38] Stone, P. A., Waleffe, F. & Graham, M. D.2002Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows. Phys. Rev. Lett.89 (20), 208301.
[39] Wang, J., Gibson, J. & Waleffe, F.2007Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett.98 (20), 204501.
[40] Watanabe, T., Iima, M. & Nishiura, Y.2016A skeleton of collision dynamics: hierarchical network structure among even-symmetric steady pulses in binary fluid convection. SIAM J. Appl. Dyn. Sys.15 (2), 789-806. · Zbl 1375.76179
[41] Zammert, S. & Eckhardt, B.2015Crisis bifurcations in plane Poiseuille flow. Phys. Rev. E91, 041003(R). · Zbl 1388.37079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.