Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. (English) Zbl 07201584

Summary: We introduce a numerical method for the approximation of linear poroelasticity equations, representing the interaction between the non-viscous filtration flow of a fluid and the linear mechanical response of a porous medium. In the proposed formulation, the primary variables in the system are the solid displacement, the fluid pressure, the fluid flux, and the total pressure. A discontinuous finite volume method is designed for the approximation of solid displacement using a dual mesh, whereas a mixed approach is employed to approximate fluid flux and the two pressures. We focus on the stationary case and the resulting discrete problem exhibits a double saddle-point structure. Its solvability and stability are established in terms of bounds (and of norms) that do not depend on the modulus of dilation of the solid. We derive optimal error estimates in suitable norms, for all field variables; and we exemplify the convergence and locking-free properties of this scheme through a series of numerical tests.


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65N15 Error bounds for boundary value problems involving PDEs


Full Text: DOI Link


[1] F. Aguilar, F.L. Gaspar and C. Rodrigo, Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation. Int. J. Numer. Methods Eng. 75 (2008) 1282-1300. · Zbl 1158.74473
[2] E. Ahmed, F.A. Radu and J.M. Nordbotten, Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 347 (2019) 264-294. · Zbl 1440.74117
[3] I. Ambartsumyan, E. Khattatov, I. Yotov and P. Zunino, A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 140 (2018) 513-553. · Zbl 1406.76081
[4] V. Anaya, Z. De Wijn, B. Gómez-Vargas, D. Mora and R. Ruiz-Baier, Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. Submitted preprint (2019). Available from . · Zbl 1455.65208
[5] V. Anaya, Z. De Wijn, D. Mora and R. Ruiz-Baier, Mixed displacement-rotation-pressure formulations for linear elasticity. Comput. Methods Appl. Mech. Eng. 344 (2019) 71-94. · Zbl 1440.74457
[6] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. · Zbl 0482.65060
[7] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. · Zbl 1008.65080
[8] R. Asadi, B. Ataie-Ashtiani and C.T. Simmons, Finite volume coupling strategies for the solution of a Biot consolidation model. Comput. Geotech. 55 (2014) 494-505.
[9] T. Bærland, J.J. Lee, K.-A. Mardal and R. Winther, Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. Comput. Methods Appl. Math. 17 (2017) 377-396. · Zbl 1421.74095
[10] L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput. 37 (2015) A2222-A2245. · Zbl 1326.76054
[11] L. Berger, R. Bordas, D. Kay and S. Tavener, A stabilized finite element method for finite-strain three-field poroelasticity. Comput. Mech. 60 (2017) 51-68. · Zbl 1386.74134
[12] M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182-185. · Zbl 0067.23603
[13] D. Boffi, M. Botti and D.A. Di Pietro, A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38 (2016) A1508-A1537. · Zbl 1337.76042
[14] D. Boffi, F. Brezzi and M. Fortin, Mixed finite element methods and applications. In: Vol. 44 of Springer Series in Computational Mathematics. Springer (2010). · Zbl 1277.65092
[15] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Verlag (2010). · Zbl 1220.46002
[16] M. Bukač, I. Yotov and P. Zunino, Dimensional model reduction for flow through fractures in poroelastic media. ESAIM: M2AN 51 (2017) 1429-1471. · Zbl 1372.76100
[17] R. Bürger, S. Kumar and R. Ruiz-Baier, Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299 (2015) 446-471. · Zbl 1351.76098
[18] C. Carstensen, N. Nataraj and A.K. Pani, Comparison results and unified analysis for first-order finite volume element methods for a Poisson model problem. IMA J. Numer. Anal. 36 (2016) 1120-1142. · Zbl 1433.65254
[19] N. Castelletto, J.A. White and M. Ferronato, Scalable algorithms for three-field mixed finite element coupled poromechanics. J. Comput. Phys. 327 (2016) 894-918. · Zbl 1373.76312
[20] D. Chapelle and P. Moireau, General coupling of porous flows and hyperelastic formulations - From thermodynamics principles to energy balance and compatible time schemes. Eur. J. Mech. B/Fluids 46 (2014) 82-96. · Zbl 1297.76157
[21] Y. Chen, Y. Luo and M. Feng, Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219 (2013) 9043-9056. · Zbl 1290.74038
[22] Z. Chen, Y. Xu and Y. Zhang, A second-order hybrid finite volume method for solving the Stokes equation. Appl. Numer. Math. 119 (2017) 213-224. · Zbl 1368.65153
[23] Z. De Wijn, R. Oyarzúa and R. Ruiz-Baier, A second-order finite-volume-element scheme for linear poroelasticity. Submitted preprint (2019). Available from .
[24] Q. Deng, V. Ginting, B. McCaskill and P. Torsu, A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces. J. Comput. Phys. 347 (2017) 78-98. · Zbl 1380.65256
[25] D. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69 of Mathématiques & Applications. Springer, Heidelberg (2012). · Zbl 1231.65209
[26] Q. Fang and D.A. Boas, Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17 (2009) 20178-20190.
[27] X. Feng, Z. Ge and Y. Li, Analysis of a multiphysics finite element method for a poroelasticity model. IMA J. Numer. Anal. 38 (2018) 330-359. · Zbl 1406.65085
[28] G. Fu, A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77 (2019) 237-252.
[29] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). · Zbl 1293.65152
[30] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11) (2009) 1309-1331. · Zbl 1176.74181
[31] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. In: Vol. 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York (1979). · Zbl 0413.65081
[32] V. Girault, M.F. Wheeler, B. Ganis and M.E. Mear, A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25 (2015) 587-645. · Zbl 1309.76194
[33] Q. Hong and J. Kraus, Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48 (2018) 202-226. · Zbl 1398.65046
[34] Q. Hong, J. Kraus, M. Lymbery and F. Philo, Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models. Numer. Linear Alg. Appl. 26 (2019) e2242. · Zbl 1463.65372
[35] X. Hu, C. Rodrigo, F.J. Gaspar and L.T. Zikatanov, A non-conforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310 (2017) 143-154. · Zbl 1381.76175
[36] G. Kanschat and B. Rivière, A finite element method with strong mass conservation for Biot’s linear consolidation model. J. Sci. Comput. 77 (2018) 1762-1779. · Zbl 1407.65192
[37] S. Kumar and R. Ruiz-Baier, Equal order discontinuous finite volume element methods for the Stokes problem. J. Sci. Comput. 65 (2015) 956-978. · Zbl 1330.76085
[38] R. Lazarov and X. Ye, Stabilized discontinuous finite element approximations for Stokes equations. J. Comput. Appl. Math. 198 (2007) 236-252. · Zbl 1101.76035
[39] J.J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39 (2017) A1-A24. · Zbl 1381.76183
[40] J.J. Lee, E. Persanti, K.-A. Mardal and M.E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41 (2019) A722-A747.
[41] R.W. Lewis and B.A. Schrefler, The Finite Element Method in the Deformation of and Consolidation of Porous Media. Wiley & Sons, Chichester (1987). · Zbl 0935.74004
[42] R. Liu, M.F. Wheeler, C.N. Dawson and R.H. Dean, On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Eng. 198 (2009) 3499-3510. · Zbl 1230.74189
[43] K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18 (2011) 1-40. · Zbl 1249.65246
[44] M.A. Murad, V. Thomée and A.F.D. Loula, Asymptotic behavior of semi discrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33 (1996) 1065-1083. · Zbl 0854.76053
[45] A. Naumovich, On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains. Comput. Methods Appl. Math. 6 (2006) 306-325. · Zbl 1100.74060
[46] A. Naumovich and F.J. Gaspar, On a multigrid solver for the three-dimensional Biot poroelasticity system in multilayered domains. Comput. Vis. Sci. 11 (2008) 77-87.
[47] R. Oyarzúa and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54 (2016) 2951-2973. · Zbl 1457.65210
[48] R. Penta, D. Ambrosi and R.J. Shipley, Effective governing equations for poroelastic growing media. Q. J. Mech. Appl. Math. 67 (2014) 69-91. · Zbl 1346.74159
[49] G.P. Peters and D.W. Smith, Solute transport through a deforming porous medium. Int. J. Numer. Anal. Methods Geomech. 26 (2002) 683-717. · Zbl 1168.74339
[50] P.J. Phillips and M.F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12 (2008) 417-435. · Zbl 1155.74048
[51] M. Radszuweit, H. Engel and M. Bär, An active poroelastic model for mechanochemical patterns in protoplasmic droplets of physarum polycephalum.PLoS One 9 (2014) e99220.
[52] R. Riedlbeck, D.A. Di Pietro, A. Ern, S. Granet and K. Kazymyrenko, Stress and flux reconstruction in Biot’s poro-elasticity problem with application to a posteriori error analysis. Comput. Math. Appl. 73 (2017) 1593-1610. · Zbl 1370.76086
[53] B. Rivière, J. Tan and T. Thompson, Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations. Comput. Math. Appl. 73 (2017) 666-683. · Zbl 1368.65195
[54] C. Rodrigo, F.J. Gaspar, X. Hu and L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 298 (2016) 183-204. · Zbl 1425.74164
[55] R. Ruiz-Baier and I. Lunati, Mixed finite element – discontinuous finite volume element discretization of a general class of multicontinuum models. J. Comput. Phys. 322 (2016) 666-688. · Zbl 1351.76079
[56] R. Sacco, P. Causin, C. Lelli and M.T. Raimondi, A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering. Meccanica 52 (2017) 3273-3297. · Zbl 1394.74037
[57] R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl. 251 (2000) 310-340. · Zbl 0979.74018
[58] K.H. Støverud, M. Alnæs, H.P. Langtangen, V. Haughton and K.-A. Mardal, Poro-elastic modeling of Syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput. Methods Biomech. Biomed. Eng. 19 (2016) 686-698.
[59] M. Sun and H. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity. Comput. Math. Appl. 73 (2017) 804-823. · Zbl 1369.76028
[60] J.C. Vardakis, D. Chou, B.J. Tully, C.C. Hung, T.H. Lee, P.-H. Tsui and Y. Ventikos, Investigating cerebral oedema using poroelasticity. Med. Eng. Phys. 38 (2016) 48-57.
[61] A.-T. Vuong, L. Yoshihara and W.A. Wall, A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 283 (2015) 1240-1259. · Zbl 1423.76447
[62] M.F. Wheeler, G. Xue and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18 (2014) 57-75. · Zbl 1395.65093
[63] J.A. White and R.I. Borja, Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197 (2008) 4353-4366. · Zbl 1194.74480
[64] X. Ye, A discontinuous finite volume method for the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 183-198. · Zbl 1112.65125
[65] S.-Y. Yi, A Coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Part. Diff. Equ. 29 (2013) 1749-1777. · Zbl 1274.74455
[66] S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Part. Diff. Equ. 30 (2014) 1189-1210. · Zbl 1350.74024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.