×

zbMATH — the first resource for mathematics

An uncertain sustainable supply chain network. (English) Zbl 07197746
Summary: As the concept of sustainable development and environmental awareness has aroused huge attention from the public, environmental and social factors have gradually been critical to the development of upstream and downstream enterprises in the supply chain. An uncertain sustainable supply chain involving the factors of cost, environmental impact and social benefits is considered. Some factors (e.g., demand, cost and capacity) are recognized as uncertain variables. In the present study, a multi-objective chance-constrained model in the uncertain scenario is developed to delve into the impact of uncertainties on decision variables. In accordance with the uncertainty theory, this study elucidates the deterministic equivalence of the model. To solve this model effectively, a hybrid genetic algorithm is proposed based on variable length chromosome coding. Lastly, numerical experiments are performed to verify the feasibility of the model and algorithm.
MSC:
90-XX Operations research, mathematical programming
91-XX Game theory, economics, finance, and other social and behavioral sciences
PDF BibTeX Cite
Full Text: DOI
References:
[1] Baud-Lavigne, B.; Agard, B.; Penz, B., Environmental constraints in joint product and supply chain design optimization, Comput. Ind. Eng., 76, 16-22 (2014)
[2] Beheshtifar, S.; Alimohammadi, A., A multi-objective optimization approach for location-allocation of clinics,, Int. Trans. Oper. Res., 22, 313-328 (2014)
[3] Chalmardi, M.; Camacho-Vallejo, J., A bi-level programming model for sustainable supply chain network design that considers incentives for using cleaner technologies, J. Clean. Prod., 213, 1035-1050 (2019)
[4] Chardine-Baumann, E.; Botta-Genoulaz, V., A framework for sustainable performance assessment of supply chain management practices, Comput. Ind. Eng. Vol., 76, 138-147 (2014)
[5] Charnes, A.; Cooper, W., Constrained-chance programming,, Manag. Sci., 6, 1, 73-79 (1959) · Zbl 0995.90600
[6] Chen, L.; Peng, J.; Zhang, B., Uncertain goal programming models for bicriteria solid transportation problem, Appl. Soft Comput., 51, 49-59 (2017)
[7] Chen, L.; Peng, J.; Zhang, B.; Rosyida, I., Diversified models for portfolio selection based on uncertain semivariance,, Int. J. Syst. Sci., 48, 3, 637-648 (2017) · Zbl 1411.91491
[8] Chen, L.; Peng, J.; Liu, Z.; Zhao, R., Pricing and effort decisions for a supply chain with uncertain information, Int. J. Prod. Res., 55, 1, 264-284 (2017)
[9] Chen, Y.; Zhu, Y., Optimistic value model of indefinite LQ optimal control for discrete-time uncertain systems, Asian J. Control, 20, 1, 495-510 (2018) · Zbl 1391.49066
[10] Chen, Y.; Zhu, Y., Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems, J. Ind. Manag. Opt., 14, 3, 913-930 (2018) · Zbl 1412.49068
[11] Cruz, J., Mitigating global supply chain risks through corporate social responsibility, Int. J. Prod. Res., 51, 13, 3995-4010 (2013)
[12] Das, K., Integrating lean systems in the design of a sustainable supply chain model, Int. J. Prod. Econ., 198, 177-190 (2018)
[13] Deng, L.; Zhu, Y., Optimal control of uncertain systems with jump under optimistic value criterion, Eur. J. Control, 38, 7-15 (2017) · Zbl 1380.49030
[14] Deng, L.; You, Z.; Chen, Y., Optimistic value model of multidimensional uncertain optimal control with jump, Eur. J. Control, 39, 1-7 (2018) · Zbl 1380.93286
[15] Devika, K.; Jafarian, A.; Nourbakhsh, V., Designing a sustainable closed-loop supply chain network based on triple bottom line approach: a comparison of metaheuristics hybridization techniques, Eur. J. Oper. Res., 235, 594-615 (2014) · Zbl 1305.90054
[16] Gao, R., Stability in mean for uncertain differential equation with jumps, Appl. Math. Comput., 346, 15-22 (2019) · Zbl 1428.60076
[17] Gao, R., Stability of solution for uncertain wave equation, Appl. Math. Comput., 356, 469-478 (2019) · Zbl 1428.35153
[18] Gao, Y.; Wen, M.; Ding, S., (S,s) policy for uncertain single period inventory problem, Int. J. Uncertainty Fuzziness Knowl. Based Syst., 21, 6, 945-953 (2013) · Zbl 1401.90029
[19] Govindan, K.; Jha, P.; Garg, K., Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing,, Int. J. Prod. Res., 54, 1462-1486 (2015)
[20] Hall, J.; Matos, S.; Silvestre, B., Understanding why firms should invest in sustainable supply chains: a complexity approach,, Int. J. Prod. Res., 50, 5, 1332-1348 (2012)
[21] Jia, L.; Lio, W.; Yang, X., Numerical method for solving uncertain spring vibration equation, Appl. Math. Comput., 337, 428-441 (2018) · Zbl 1427.34002
[22] Jia, L.; Sheng, Y., Stability in distribution for uncertain delay differential equation, Appl. Math. Comput., 343, 49-56 (2019) · Zbl 1428.34080
[23] Ke, H.; Liu, H.; Tian, G., An uncertain random programming model for project scheduling problem, Int. J. Intell. Syst., 30, 1, 66-79 (2015)
[24] Ke, H.; Liu, J., Dual-channel supply chain competition with channel preference and sales effort under uncertain environment, J. Ambient Intell. Humaniz Comput., 8, 8, 781-795 (2017)
[25] Ke, H.; Huang, H.; Gao, X., Pricing decision problem in dual-channel supply chain based on experts’ belief degrees, Soft Comput, 22, 17, 5683-5698 (2018) · Zbl 1398.90071
[26] Ke, H.; Wu, Y.; Huang, H., Competitive pricing and remanufacturing problem in an uncertain closed-loop supply chain with risk-sensitive retailers, Asia Pacific J. Oper. Res., 35, 1, 1-21 (2018) · Zbl 1387.90021
[27] Mohammadi, M.; Torabi, S.; Tavakkoli-Moghaddam, R., Sustainable hub location under mixed uncertainty, Transp. Res. Part E: Logist. Transp. Rev., 62, 89-115 (2014)
[28] Mota, B.; Gomes, M.; Carvalho, A.; Barbosa-Povoa, A., Sustainable supply chains: an integrated modeling approach under uncertainty, Omega (Westport), 77, 32-57 (2018)
[29] Mota, B.; Gomes, M.; Carvalho, A.; Barbosa-Povoa, A., Towards supply chain sustainability: economic, environmental and social design and planning, J. Clean. Prod., 105, 14-27 (2015)
[30] Nidhi, M.; Pillaib, V., Product disposal penalty: analysing carbon sensitive sustainable supply chains, Comput. Ind. Eng., 128, 8-23 (2019)
[31] 2nd Edition
[32] Liu, B., Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty (2010), Springer-Verlag: Springer-Verlag Berlin
[33] Liu, B., Some research problems in uncertainty theory, J. Uncertain Syst., 3, 1, 3-10 (2019)
[34] Pinto-Varela, T.; Barbosa-Póvoa, A.; Novais, A., Bi-objective optimization approach to the design and planning of supply chains: economic versus environmental performances, Comput. Chem. Eng., 35, 8, 1454-1468 (2011)
[35] Pishvaee, M.; Razmi, J., Environmental supply chain network design using multi-objective fuzzy mathematical programming, Appl. Math. Model., 36, 8, 3433-3446 (2012) · Zbl 1252.90010
[36] Qin, Z.; Kar, S., Single-period inventory problem under uncertain environment, Appl. Math. Comput., 219, 18, 9630-9638 (2013) · Zbl 1290.90007
[37] Rabbani, M.; Saravi, N.; Farrokhi-Asl, H.; W. T. Lim, S.; Tahaei, Z., Developing a sustainable supply chain optimization model for switchgrass-based bioenergy production: a case study,, J. Clean Prod., 200, 827-843 (2018)
[38] Saberi, S., Sustainable, multiperiod supply chain network model with freight carrier through reduction in pollution stock, Transp. Res. Part E: Logist. Transp. Rev., 118, 421-444 (2018)
[39] Saffar, M.; Razmi, H. G.J., A new multi objective optimization model for designing a green supply chain network under uncertainty,, Int. J. Ind. Eng. Comput., 6, 15-32 (2015)
[40] Shen, J.; Zhu, Y., Chance-constrained model for uncertain job shop scheduling problem,, Soft Comput., 20, 6, 2383-2391 (2016) · Zbl 1370.90120
[41] Shen, J.; Zhu, Y., Uncertain flexible flow shop scheduling problem subject to breakdowns,, J. Intell. Fuzzy Syst., 32, 207-214 (2017) · Zbl 1366.90102
[42] Shen, J.; Zhu, K., An uncertain single machine scheduling problem with periodic maintenance,, Knowl. Based Syst., 144, 32-41 (2018)
[43] Shen, J.; Zhu, Y., An uncertain programming model for single machine scheduling problem with batch delivery,, J. Ind. Manag. Opt., 15, 2, 577-593 (2019) · Zbl 1438.90116
[44] Shen, J.; Zhu, Y., A parallel-machine scheduling problem with periodic maintenance under uncertainty,, J. Ambient Intell. Human. Comput. Vol., 10, 3171-3179 (2019)
[45] Shen, J., An uncertain parallel machine problem with deterioration and learning effect,, Comput. Appl. Math., 38, 3 (2019) · Zbl 1438.90135
[46] Sheng, Y.; Shi, G., Stability in mean of multi-dimensional uncertain differential equation,, Appl. Math. Comput., 353, 178-188 (2019) · Zbl 1428.34082
[47] Shen, H.; Xing, M.; Huo, S.; Wu, Z.; Park, J., Finite-time h∞ asynchronous state estimation for discrete-time fuzzy markov jump neural networks with uncertain measurements,, Fuzzy Sets Syst., 356, 1, 113-128 (2019) · Zbl 1423.93381
[48] Shen, H.; Huo, S.; Cao, J.; Huang, T. W., Generalized state estimation for markovian coupled networks under round-robin protocol and redundant channels,, IEEE Trans. Cybern., 49, 4, 1292-1301 (2019)
[49] Shen, H.; Wang, T.; Cao, J.; Lu, G.; Song, Y.; Huang, T. W., Non-fragile dissipative synchronization for markovian memristive neural networks: a gain-scheduled control scheme,, IEEE Trans. Neural Netw. Learn Syst., 30, 6, 1841-1853 (2019)
[50] Sun, G.; Yang, B.; Yang, Z.; Xu, G., An adaptive differential evolution with combined strategy for global numerical optimization,, Soft Comput. (2019)
[51] Sun, G. J.; Xu, G.; Jiang, N., A simple differential evolution with time-varying strategy for continuous optimization, Soft Comput. (2019)
[52] Taleizadeh, A.; Haghighi, F.; Niaki, S., Modeling and solving a sustainable closed loop supply chain problem with pricing decisions and discounts on returned products, J. Clean Prod., 207, 163-181 (2019)
[53] Tsao, Y.; Thanh, V.; Lu, J.; Yu, V., Designing sustainable supply chain networks under uncertain environments: fuzzy multi-objective programming, J. Clean Prod., 174, 1550-1565 (2018)
[54] Wang, X.; Ning, Y.; Peng, Z., Some results about uncertain differential equations with time-dependent delay,, Appl. Math. Comput., 366 (2020) · Zbl 1433.34108
[55] Wang, K.; Yang, Q., Hierarchical facility location for the reverse logistics network design under uncertainty, J. Uncertain Syst., 8, 4, 255-270 (2014)
[56] Wen, M.; Qin, Z.; Kang, K., The α-cost minimization model for capacitated facility location-allocation problem with uncertain demands, Fuzzy Opt. Decis. Making, 13, 3, 345-356 (2014) · Zbl 1428.90095
[57] Yao, K.; Ke, H.; Sheng, Y., Stability in mean for uncertain differential equation,, Fuzzy Optim. Decis. Making, 14, 3, 365-379 (2015) · Zbl 1463.93250
[58] Yao, K., Uncertain differential equation with jumps, Soft Comput., 19, 7, 2063-2069 (2015) · Zbl 1361.60048
[59] Yao, K.; Zhou, J., Uncertain random renewal reward process with application to block replacement policy, IEEE Trans. Fuzzy Syst., 24, 6, 1637-1647 (2016)
[60] Yao, K.; Zhou, J., Ruin time of uncertain insurance risk process, IEEE Trans. Fuzzy Syst., 26, 1, 19-28 (2018)
[61] Yao, K.; Zhou, J., Renewal reward process with uncertain interarrival times and random rewards, IEEE Trans. Fuzzy Syst., 26, 3, 1757-1762 (2018)
[62] You, F.; Wang, B., Life cycle optimization of biomass-to-liquid supply chains with distributed centralized processing networks, Ind. Eng. Chem. Res., 50, 10102-10127 (2011)
[63] Yu, M.; Cruz, J.; Li, D., The sustainable supply chain network competition with environmental tax policies, Int. J. Prod. Econ., 217, 218-231 (2019)
[64] Yue, D.; Kim, M.; You, F., Design of sustainable product systems and supply chains with life cycle optimization based on functional unit: general modeling framework, mixed-integer nonlinear programming algorithms and case study on hydrocarbon biofuels, Acs Sustain. Chem. Eng., 1, 8, 1003-1014 (2013)
[65] Zhang, Z.; Awasthi, A., Modelling customer and technical requirements for sustainable supply chain planning,, Int. J. Prod. Res., 52, 17, 5131-5154 (2014)
[66] Zhang, B.; Li, H.; Li, S.; Peng, J., Sustainable multi-depot emergency facilities location-routing problem with uncertain information, Appl. Math. Comput., 333, 506-520 (2018) · Zbl 1427.90060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.