zbMATH — the first resource for mathematics

The role of dimerization in noise reduction of simple genetic networks. (English) Zbl 07196935
Summary: Fluctuations are an intrinsic property of genetic networks due to the small number of interacting molecules. We study the role of dimerization reactions in controlling these fluctuations in a simple genetic circuit with negative feedback. We compare two different pathways. In the dimeric pathway the proteins to be regulated form dimers in solution that afterward bind to an operator site and inhibit transcription. In the monomeric pathway monomers bind to the operator site and then recruit another monomer to form a dimer directly on the DNA. We find that while both pathways implement the same negative feedback mechanism, the protein number fluctuations in the dimeric pathway are drastically reduced compared to the monomeric pathway. This difference in the ability to reduce fluctuations may be of importance in the design of genetic networks.

92D10 Genetics and epigenetics
92C42 Systems biology, networks
Full Text: DOI
[1] ACKERS, G. K.; JOHNSON, A. D.; SHEA, M. A., Quantitative model for gene regulation by lambda phage repressor, Proc. Natl. Acad. Sci. U.S.A., 79, 1129-1133 (1982)
[2] ALBERTS, B.; BRAY, D.; LEWIS, J.; RAFF, M.; ROBERTS, K.; WATSON, J. D., Molecular Biology of the Cell (1994), Garland Publishing: Garland Publishing New York
[3] ARKIN, A.; ROSS, J.; MCADAMS, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells, Genetics, 149, 1633-1648 (1998)
[4] BECSKEI, A.; SERRANO, L., Engineering stability in gene networks by autoregulation, Nature, 405, 590-593 (2000)
[5] BERGER, C.; PIUBELLI, L.; HADITSCH, U.; BOSSHARD, H. R., Diffusion-controlled DNA recognition by an unfolded, monomeric bZIP transcription factor, FEBS Lett., 425, 14-18 (1998)
[6] GILLESPIE, D. T., Stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 2340-2361 (1977)
[7] GOTTESMAN, S.; MAURIZI, M. R., Regulation by proteolysis: energy-dependent proteases and their targets, Microbiol. Rev., 56, 592-621 (1992)
[8] HASTY, J.; PRADINES, J.; DOLNIK, M.; COLLINS, J. J., Noise-based switches and amplifiers for gene expression, Proc. Natl. Acad. Sci. U.S.A., 97, 2075-2080 (2000)
[9] HAWLEY, D. K.; MCCLURE, W. R., Mechanism of activation of transcription initiation from the lambda PRM promoter, J. Mol. Biol., 157, 493-525 (1982)
[10] MCADAMS, H. H.; ARKIN, A., Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. U.S.A., 94, 814-819 (1997)
[11] MCADAMS, H. H.; ARKIN, A., It’s a noisy business! Genetic regulation at the nanomolar scale, Trends Genet., 15, 65-69 (1999)
[12] MCADAMS, H. H.; SHAPIRO, L., Circuit simulation of genetic networks, Science, 269, 650-656 (1995)
[13] MCCLURE, W. R., Rate-limiting steps in RNA chain initiation, Proc. Natl. Acad. Sci. U.S.A., 77, 5634-5638 (1980)
[14] MCCLURE, W. R., A biochemical analysis of the effect of RNA polymerase concentration on the in vivo control of RNA chain initiation frequency, (Lennon, D. L.F.; Stratman, F. W.; Zahltne, R. N., Biochemistry of Metabolic Processes (1983), Elsevier Science Publishing Co: Elsevier Science Publishing Co New York), 207-217
[15] PARK, C.; CAMPBELL, J. L.; GODDARD III, W. A., Protein stitchery: design of a protein for selective binding to a specific DNA sequence, J. Am. Chem. Soc., 118, 4235-4239 (1996)
[16] PTASHNE, M.; JEFFREY, A.; JOHNSON, A. D.; MAURER, R.; MEYER, B. J.; PABO, C. O.; ROBERTS, T. M.; SAUER, R. T., How the lambda repressor and cro work, Cell, 19, 1-11 (1980)
[17] SAVAGEAU, M. A., Comparison of classical and autogenous systems of regulation in inducible operons, Nature, 252, 546-549 (1974)
[18] SAUER, R. T., Molecular Characterization of the Lambda Repressor and Its Gene CI (1979), Harvard University Press: Harvard University Press Cambridge
[19] SHEA, M. A.; ACKERS, G. K., The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation, J. Mol. Biol., 181, 211-230 (1985)
[20] THATTAI, M.; VAN OUDENAARDEN, A., Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. U.S.A., 98, 8614-8619 (2001)
[21] UJVARI, A.; MARTIN, C. T., Thermodynamic and kinetic measurements of promoter binding by T7 RNA polymerase, Biochemistry, 35, 14574-14582 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.