zbMATH — the first resource for mathematics

Periodic controls in step 2 strictly convex sub-Finsler problems. (English) Zbl 07196170
Summary: We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.

49K15 Optimality conditions for problems involving ordinary differential equations
49N20 Periodic optimal control problems
53C17 Sub-Riemannian geometry
Full Text: DOI
[1] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications (2006), Providence, R. I.: AMS, Providence, R. I.
[2] Agrachev, A. A.; Sachkov, Y. L., Control Theory from the Geometric Viewpoint (2004), Berlin: Springer, Berlin · Zbl 1062.93001
[3] Agrachev, A.; Barilari, D.; Boscain, U., A Comprehensive Introduction to Sub-Riemannian Geometry (2019), Cambridge: Cambridge Univ. Press, Cambridge
[4] Berestovskii, V. N., Homogeneous Manifolds with an Intrinsic Metric: 2, Siberian Math. J., 30, 2, 180-191 (1989) · Zbl 0681.53029
[5] Berestovskii, V. N., Geodesics of Nonholonomic Left-Invariant Intrinsic Metrics on the Heisenberg Group and Isoperimetric Curves on the Minkowski Plane, Siberian Math. J., 35, 1, 1-8 (1994) · Zbl 0833.49015
[6] Barilari, D.; Boscain, U.; Le Donne, E.; Sigalotti, M., Sub-Finsler Structures from the Time-Optimal Control Viewpoint for Some Nilpotent Distributions, J. Dyn. Control Syst., 23, 3, 547-575 (2017) · Zbl 1377.49006
[7] Ardentov, A. A.; Le Donne, E.; Sachkov, Y. L., Sub-Finsler Geodesics on the Cartan Group, Regul. Chaotic Dyn., 24, 1, 36-60 (2019) · Zbl 1412.49084
[8] Ali, A.-L. and Charlot, G., Local Contact Sub-Finslerian Geometry for Maximum Norms in Dimension 3, Preprint hal-02004281 (2019). · Zbl 1419.53027
[9] Brockett, R., Nonlinear Control and Differential Geometry, in Proc. of the Internat. Congr. of Mathematicians (Warszawa, Aug 16-24, 1983), pp. 1357-1368.
[10] Myasnichenko, O., Nilpotent (3, 6) Sub-Riemannian Problem, J. Dyn. Control Syst., 8, 4, 573-597 (2002) · Zbl 1047.93014
[11] Calc. Var. Partial Dif.2016555
[12] Le Donne, E.; Rigot, S., Remarks about the Besicovitch Covering Property in Carnot Groups of Step 3 and Higher, Proc. Amer. Math. Soc., 144, 5, 2003-2013 (2016) · Zbl 1361.53030
[13] Busemann, H., The Isoperimetric Problem in the Minkowski Plane, Amer. J. Math., 69, 863-871 (1947) · Zbl 0034.25201
[14] Rizzi, L.; Serres, U., On the Cut Locus of Free, Step Two Carnot Groups, Proc. Amer. Math. Soc., 145, 12, 5341-5357 (2017) · Zbl 1397.53048
[15] Kirillov, A. A., Lectures on the Orbit Method (2004), Providence, R. I.: AMS, Providence, R. I. · Zbl 1229.22003
[16] Rockafellar, R. T., Convex Analysis (1970), Princeton, N. J.: Princeton Univ. Press, Princeton, N. J. · Zbl 0229.90020
[17] Hakavuori, E., Infinite Geodesics and Isometric Embeddings in Carnot Groups of Step 2, arXiv:1905.03214 (2019). · Zbl 07167140
[18] Sachkov, Y. L., An Exponential Mapping in the Generalized Dido Problem, Sb. Math., 194, 9-10, 1331-1359 (2003) · Zbl 1079.53050
[19] Bizyaev, I. A.; Borisov, A. V.; Kilin, A. A.; Mamaev, I. S., Integrability and Nonintegrability of Sub-Riemannian Geodesic Flows on Carnot Groups, Regul. Chaotic Dyn., 21, 6, 759-774 (2016) · Zbl 1367.53030
[20] Lokutsievskiy, L. V.; Sachkov, Y. L., Liouville Integrability of Sub-Riemannian Problems on Carnot Groups of Step 4 or Greater, Sb. Math., 209, 5, 672-713 (2018) · Zbl 1394.37091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.