×

CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data. (English) Zbl 07194341

Summary: CircSpaceTime is the only R package, currently available, that implements Bayesian models for spatial and spatio-temporal interpolation of circular data. Such data are often found in applications where, among the many, wind directions, animal movement directions, and wave directions are involved. To analyse such data, we need models for observations at locations \(\mathbf{s}\) and times \(t\), as the so-called geostatistical models, providing structured dependence assumed to decay in distance and time. The approach we take begins with Gaussian processes defined for linear variables over space and time. Then, we use either wrapping or projection to obtain processes for circular data. The models are cast as hierarchical, with fitting and inference within a Bayesian framework. Altogether, this package implements work developed by a series of papers, by Jona Lasinio, Mastrantonio, Wang, and Gelfand. All procedures are written using Rcpp. Estimates are obtained by MCMC, allowing parallelized multiple chains run. The implementation of the proposed models is considerably improved on the simple routines adopted in the research papers. As original running examples, for the spatial and spatio-temporal settings, we use wind directions datasets over central Italy.

MSC:

62-07 Data analysis (statistics) (MSC2010)
62F15 Bayesian inference
62H11 Directional data; spatial statistics
62P12 Applications of statistics to environmental and related topics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ley C, Verdebout T. Modern directional statistics. London: Chapman and Hall/CRC; 2017. [Crossref], [Google Scholar] · Zbl 1448.62005
[2] Ley C, Verdebout T, editors. Applied directional statistics: modern methods and case studies. London: Chapman and Hall/CRC; 2019. [Google Scholar] · Zbl 1397.62004
[3] Jammalamadaka SR, SenGupta A. Topics in circular statistics. Singapore: World Scientific; 2001. [Crossref], [Google Scholar] · Zbl 1006.62050
[4] Mardia KV. Statistics of directional data. London and New York: Academic Press; 1972. [Google Scholar] · Zbl 0244.62005
[5] Mardia KV, Jupp PE. Directional statistics. Chichster: John Wiley and Sons; 1999. [Crossref], [Google Scholar] · Zbl 0935.62065
[6] Coles S.Inference for circular distributions and processes. Stat Comput. 1998;8(2):105-113. doi: 10.1023/A:1008930032595[Crossref], [Web of Science ®], [Google Scholar]
[7] Banerjee S, Gelfand AE, Carlin BP. Hierarchical modeling and analysis for spatial data. 2nd ed. New York: Chapman and Hall/CRC; 2014. [Crossref], [Google Scholar] · Zbl 1358.62009
[8] Mastrantonio G, Gelfand AE, Jona Lasinio G.The wrapped skew Gaussian process for analyzing spatio-temporal data. Stoch Environ Res Risk Assess. 2016;30(8):2231-2242. doi: 10.1007/s00477-015-1163-9[Crossref], [Web of Science ®], [Google Scholar]
[9] Wang F, Gelfand AE.Modeling space and space-time directional data using projected Gaussian processes. J Am Stat Assoc. 2014;109(508):1565-1580. doi: 10.1080/01621459.2014.934454[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1368.62304
[10] Jona Lasinio G, Gelfand AE, Jona Lasinio M.Spatial analysis of wave direction data using wrapped Gaussian processes. Ann Appl Stat. 2012;6(4):1478-1498. doi: 10.1214/12-AOAS576[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1257.62094
[11] Mastrantonio G, Jona Lasinio G, Gelfand AE.Spatio-temporal circular models with non-separable covariance structure. TEST. 2016;25:331-350. doi: 10.1007/s11749-015-0458-y[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1402.62102
[12] Wang F, Gelfand AE.Directional data analysis under the general projected normal distribution. Stat Methodol. 2013;10(1):113-127. doi: 10.1016/j.stamet.2012.07.005[Crossref], [PubMed], [Google Scholar] · Zbl 1365.62195
[13] Andrieu C, Thoms J.A tutorial on adaptive MCMC. Stat Comput. 2008;18:343-373. doi: 10.1007/s11222-008-9110-y[Crossref], [Web of Science ®], [Google Scholar]
[14] Agostinelli C, Lund U. R package circular: circular statistics (version 0.4-93). CA: Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, Venice, Italy. UL: Department of Statistics, California Polytechnic State University, San Luis Obispo, California, USA; 2017. Available from: https://r-forge.r-project.org/projects/circular/. [Google Scholar]
[15] Lund U, Agostinelli C. CircStats: circular statistics, from “topics in circular statistics” (2001). R package version 0.2-6; 2018. Available from: https://CRAN.R-project.org/package=CircStats. [Google Scholar]
[16] Nadarajah S, Zhang Y. Wrapped: computes Pdf, Cdf, quantile, random numbers and provides estimation for any univariate wrapped distributions. R package version 2.0; 2017. Available from: https://CRAN.R-project.org/package=Wrapped. [Google Scholar]
[17] Oliveira M, Crujeiras RM, Rodríguez-Casal A.CircSiZer: an exploratory tool for circular data. Environ Ecol Stat. 2014;21(1):143-159. doi: 10.1007/s10651-013-0249-0[Crossref], [Web of Science ®], [Google Scholar]
[18] Pewsey A, Neuhäuser M, Ruxton GD. Circular statistics in R. Oxford: Oxford University Press; 2013. [Google Scholar] · Zbl 1282.62137
[19] Barragán S, Fernández MA, Rueda C, et al. isocir: an R package for constrained inference using isotonic regression for circular data, with an application to cell biology. J Stat Softw. 2013;54(4):1-17. doi: 10.18637/jss.v054.i04[Crossref], [Web of Science ®], [Google Scholar]
[20] Fernàndez MA, Rueda C, Peddada SD.Identification of a core set of signature cell cycle genes whose relative order of time to peak expression is conserved across species. Nucleic Acids Res. 2011;40(7):2823-2832. doi: 10.1093/nar/gkr1077[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[21] Rueda C, Fernández MA, Peddada SD.Estimation of parameters subject to order restrictions on a circle with application to estimation of phase angles of cell cycle genes. J Am Stat Assoc. 2009;104(485):338-347. doi: 10.1198/jasa.2009.0120[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1388.62047
[22] Ghazanfarihesari A, Majid Sarmad-Ferdowsi University Of Mashhad. CircOutlier: detection of outliers in circular-circular regression. R package version 3.2.3; 2016. Available from: https://CRAN.R-project.org/package=CircOutlier. [Google Scholar]
[23] Abuzaid AH, Hussin AG, Mohamed IB.Detection of outliers in simple circular regression models using the mean circular error statistic. J Stat Comput Simul. 2013;83(2):269-277. Available from: https://doi.org/10.1080/00949655.2011.602679. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1349.62180 · doi:10.1080/00949655.2011.602679
[24] Tsagris MT, Athineou G, Sajib A, et al. Directional: directional statistics. R package version 3.3; 2018. Available from: https://CRAN.R-project.org/package=Directional. [Google Scholar]
[25] Schnute JT, Groot K.Statistical analysis of animal orientation data. Anim Behav. 1992;43(1):15-33. doi: 10.1016/S0003-3472(05)80068-5[Crossref], [Web of Science ®], [Google Scholar]
[26] Zimmermann J, Wright AGC.Beyond description in interpersonal construct validation: methodological advances in the circumplex structural summary approach. Assessment. 2017;24(1):3-23. PMID: 26685192. doi: 10.1177/1073191115621795[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[27] Cremers J. bpnreg: Bayesian projected normal regression models for circular data. R package version 1.0.0; 2018. Available from: https://CRAN.R-project.org/package=bpnreg. [Google Scholar]
[28] Nuñez-Antonio G, Gutiérrez-Peña E.A Bayesian model for longitudinal circular data based on the projected normal distribution. Comput Stat Data Anal. 2014;71(C):506-519. doi: 10.1016/j.csda.2012.07.025[Crossref], [Google Scholar] · Zbl 1471.62153
[29] Cremers J, Mulder KT, Klugkist I.Circular interpretation of regression coefficients. British J Math Statist Psych. 2017;71:5-95. [Web of Science ®], [Google Scholar] · Zbl 1460.62104
[30] Mulder K, Klugkist I.Bayesian estimation and hypothesis tests for a circular generalized linear model. J Math Psychol. 2017;80:4-14. doi: 10.1016/j.jmp.2017.07.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1397.62493
[31] Fernàndez-Duran JJ, Gregorio-Domìnguez MM.CircNNTSR: an R package for the statistical analysis of circular, multivariate circular, and spherical data using nonnegative trigonometric sums. J Stat Softw. 2016;70(6):1-19. doi: 10.18637/jss.v070.i06[Crossref], [Web of Science ®], [Google Scholar]
[32] Berens P.CircStat: a matlab toolbox for circular statistics. J Stat Softw. 2009;31(10). Available from: http://www.jstatsoft.org/v31/i10. doi: 10.18637/jss.v031.i10[Crossref], [Web of Science ®], [Google Scholar]
[33] Coles S, Casson E.Extreme value modelling of hurricane wind speeds. Structural Safety. 1998;20(3):283-296. doi: 10.1016/S0167-4730(98)00015-0[Crossref], [Web of Science ®], [Google Scholar]
[34] Gelfand A, Diggle P, Fuentes M. Handbook of spatial statistics. London: Chapman and Hall; 2010. [Crossref], [Google Scholar] · Zbl 1188.62284
[35] Finley AO, Banerjee S, Gelfand AE.spBayes for large univariate and multivariate point-referenced spatio-temporal data models. J Stat Softw. 2013. (forthcoming). [Web of Science ®], [Google Scholar]
[36] Rosenthal JS.AMCMC: an R interface for adaptive MCMC. Comput Stat Data Anal. 2007;51(12):5467-5470. doi: 10.1016/j.csda.2007.02.021[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1203.62001
[37] Wickham H. Advanced R. London: CRC Press; 2015. [Google Scholar]
[38] Eddelbuettel D, Francois R.Rcpp: seamless R and C++ integration. J Stat Softw. 2011;40(8):1-18. doi: 10.18637/jss.v040.i08[Crossref], [Web of Science ®], [Google Scholar]
[39] Eddelbuettel D, Sanderson C.RcppArmadillo: accelerating R with high-performance C++ linear algebra. Comput Stat Data Anal. 2014;71:1054-1063. doi: 10.1016/j.csda.2013.02.005[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1471.62055
[40] Eddelbuettel D. Higher-performance R programming with C++ extensions. Zurich R Courses; 2017. Available from: https://goo.gl/Ng4oGQ. [Google Scholar]
[41] Bates D, Eddelbuettel D.Fast and elegant numerical linear algebra using the RcppEigen package. J Stat Softw. 2013;52(5):1-24. doi: 10.18637/jss.v052.i05[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[42] Weston S, MicrosoftCorporation. doParallel: foreach parallel adaptor for the ‘parallel’ package. R package version 1.0.11; 2017. Available from: https://CRAN.R-project.org/package=doParallel. [Google Scholar]
[43] Fernández-López J, Schliep K. rWind: download, edit and include wind data in ecological and evolutionary analysis. R package version 1.0.2; 2018. Available from: https://CRAN.R-project.org/package=rWind. [Google Scholar]
[44] Grimit EP, Gneiting T, Berrocal VJ, et al. The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quart J R Meteorol Soc. 2006;132(621C):2925-2942. doi: 10.1256/qj.05.235[Crossref], [Google Scholar]
[45] Brooks SP, Gelman A.General methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434-455. Available from: https://www.tandfonline.com/doi/abs/10.1080/10618600.1998.10474787. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[46] Gelman A, Rubin DB.Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457-472. Available from: http://www.jstor.org/stable/2246093. doi: 10.1214/ss/1177011136[Crossref], [Google Scholar] · Zbl 1386.65060
[47] Bulla J, Lagona F, Maruotti A, et al. A multivariate hidden Markov model for the identification of sea regimes from incomplete skewed and circular time series. J Agric Biol Environ Stat. 2012;17(4):544-567. doi: 10.1007/s13253-012-0110-1[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1302.62246
[48] Bulla J, Lagona F, Maruotti A, et al. Environmental conditions in semi-enclosed basins: a dynamic latent class approach for mixed-type multivariate variables. J Soc Fr Stat. 2015;156(1):114-137. [Google Scholar] · Zbl 1316.62164
[49] Lagona F, Picone M.Model-based clustering of multivariate skew data with circular components and missing values. J Appl Stat. 2012;39(5):927-945. doi: 10.1080/02664763.2011.626850[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1514.62115
[50] Lagona F, Picone M, Maruotti A, et al. A hidden Markov approach to the analysis of space-time environmental data with linear and circular components. Stoch Environ Res Risk Assess. 2015;29(2):397-409. doi: 10.1007/s00477-014-0919-y[Crossref], [Web of Science ®], [Google Scholar]
[51] Maruotti A, Punzo A, Mastrantonio G, et al. A time-dependent extension of the projected normal regression model for longitudinal circular data based on a hidden Markov heterogeneity structure. Stoch Environ Res Risk Assess. 2016;30(6):1725-1740. doi: 10.1007/s00477-015-1183-5[Crossref], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.