×

zbMATH — the first resource for mathematics

Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs. (Oka’s principle, K-theory and noncommutative dynamical systems). (French) Zbl 0719.46038
Let A, B be two Banach algebras and i: \(A\to B\) be a continuous injective algebraic morphisms with dense image. What can the map \[ \iota_*: K_ j(A)\to K_ j(B)\quad (j=0,1) \] between the groups of the topological K-theory of A and B tell us? When is \(\iota_*\) an isomorphism? The author gives some criteria on these questions.
Reviewer: B.Basit (Giza)

MSC:
46L55 Noncommutative dynamical systems
46L80 \(K\)-theory and operator algebras (including cyclic theory)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [B] Bochner, S.: Bounded analytic functions in several variables and multiple Laplace integrals. Am. J. Math.59, 732-738 (1937) · Zbl 0017.36501 · doi:10.2307/2371340
[2] [Bo] Bost, J.B.:K-théorie des produits croisés et principe d’Oka. C.R. Acad. Sci. Paris. (I)-301, 189-192 (1985) · Zbl 0588.46041
[3] [Ca1] Cartan, H.: Sur les matrices holomorphes den variables complexes. J. Math. Pures Appl.19, 1-26 (1940) · Zbl 0023.18301 · doi:10.1007/BF02410537
[4] [Ca2] Cartan, H.: Espaces fibrés analytiques. Symposium Internacional de Topologia algebraica, Mexico (1958), 97-121
[5] [Co1] Connes, A.: An analogue of the Thom isomorphism for crossed products of aC *-algebra by an action of ?. Adv. Math.39, 31-55 (1981) · Zbl 0461.46043 · doi:10.1016/0001-8708(81)90056-6
[6] [Co2] Connes, A.: Non-commutative differential geometry. Publ. Math., Inst. Hautes Etud. Sci.62, 44-144 (1986)
[7] [Co3] Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation. In: Araki, H., Effros, E.G., (ed.) Geometric methods in operator algebras, London: Longman 1986
[8] [C-G] Cornalba, M., Griffiths, P.: Analytic cycles and vector bundles on noncompact algebraic varieties. Invent. Math.28, 1-106 (1975) · Zbl 0293.32026 · doi:10.1007/BF01389905
[9] [D] Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier16, 1-95 (1966) · Zbl 0146.31103
[10] [Gr] Grauert, H.: Approximationsätze für holomorphe Funktionen mit Werten in komplexen Räumen. Math. Ann.133, 139-159 (1957); Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann.133, 450-472 (1957); Analytische Faserungen über holomorphe-vollständigen Räumen. Math. Ann.136, 245-318 (1958) · Zbl 0080.29201 · doi:10.1007/BF01343296
[11] [Ho] Hörmander, L.: An introduction to complex analysis in several variables. North-Holland 1973 · Zbl 0271.32001
[12] [Ka] Karoubi, M.:K-theory, an introduction. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0382.55002
[13] [L-P] Leptin, H., Poguntke, D.: Symmetry and nonsymmetry for locally compact groups. J. Funct. Anal.33, 119-134 (1979) · Zbl 0414.43004 · doi:10.1016/0022-1236(79)90107-1
[14] [Mil] Milnor, J.: On spaces having the homotopy type of aCW-complex. Trans. Am. Math. Soc.90, 272-280 (1959) · Zbl 0084.39002
[15] [P] Pedersen, G.K.:C *-algebras and their automorphism groups. New York: Academic Press 1979 · Zbl 0416.46043
[16] [S] Seeley, R.T.: Extensions ofC ?-functions defined in a half-space. Proc. Am. Math. Soc.15, 625-626 (1964) · Zbl 0127.28403
[17] [Sw] Swan, R.G.: Topological examples of projective modules. Trans. Am. Math. Soc.230, 201-234 (1977) · Zbl 0443.13005 · doi:10.1090/S0002-9947-1977-0448350-9
[18] [T1] Taylor, J.L.: Banach algebras and topology. In: Algebra in Analysis, Williamson, J.H., (Ed.), New York: Academic Press 1975
[19] [T2] Taylor, J.L.: Topological invariants of the maximal ideal space of a Banach algebra. Adv. Math.19, 149-206 (1976) · Zbl 0323.46058 · doi:10.1016/0001-8708(76)90061-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.