×

zbMATH — the first resource for mathematics

The generalized finite difference method for long-time transient heat conduction in 3D anisotropic composite materials. (English) Zbl 07186619
Summary: In this paper we investigate the application of the generalized finite difference method (GFDM) to three-dimensional (3D) transient heat conduction in anisotropic composite (layered) materials. In our computations, the Krylov deferred correction (KDC) method, a pseudo-spectral type time-marching technique, is introduced to perform temporal discretization in time-domain. The KDC method allows discretizing the temporal direction using relatively large time-steps, making the method very promising for dynamic simulations, particularly when high precision is desired. A multi-domain GFDM scheme is also employed where the composite material considered is decomposed into several sub-domains and, in each sub-domain, the solution is approximated by using the GFDM expansion. On the sub-domain interface, compatibility of temperatures and normal heat fluxes is imposed. The method is tested on several benchmark numerical examples and its relative merits and disadvantages are discussed.

MSC:
80-XX Classical thermodynamics, heat transfer
65-XX Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Luo, J. F.; Liu, Y. J.; Berger, E. J., Interfacial stress analysis for multi-coating systems using an advanced boundary element method, Comput. Mech., 24, 448-455 (2000) · Zbl 0961.74069
[2] Gu, Y.; He, X.; Chen, W.; Zhang, C., Analysis of three-dimensional anisotropic heat conduction problems on thin domains using an advanced boundary element method, Comput. Math. Appl., 75, 33-44 (2018) · Zbl 1416.80006
[3] Lin, J.; Zhang, C.; Sun, L.; Lu, J., Simulation of seismic wave scattering by embedded cavities in an elastic half-plane using the novel singular boundary method, Adv. Appl. Math. Mech., 10, 322-342 (2018)
[4] Qu, W.; Chen, W.; Gu, Y., Fast multipole accelerated singular boundary method for the 3D Helmholtz equation in low frequency regime, Comput. Math. Appl., 70, 679-690 (2015)
[5] Liu, G. R.; Gu, Y. T., A meshfree method: meshfree weak – strong (MWS) form method, for 2-D solids, Comput. Mech., 33, 2-14 (2003) · Zbl 1063.74105
[6] Tomas Johansson, B.; Lesnic, D., A method of fundamental solutions for transient heat conduction in layered materials, Eng. Anal. Bound. Elem., 33, 1362-1367 (2009) · Zbl 1244.80022
[7] Berger, J. R.; Karageorghis, A., The method of fundamental solutions for heat conduction in layered materials, Int. J. Numer. Methods Eng., 45, 1681-1694 (1999) · Zbl 0972.80014
[8] Karageorghis, A.; Lesnic, D., Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions, Comput. Methods Appl. Mech. Eng., 197, 3122-3137 (2008) · Zbl 1194.74054
[9] Li, J.; Fu, Z.; Chen, W., Numerical investigation on the obliquely incident water wave passing through the submerged breakwater by singular boundary method, Comput. Math. Appl., 71, 381-390 (2016)
[10] Nguyen, N. T.; Bui, T. Q.; Zhang, C.; Truong, T. T., Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, Eng. Anal. Bound. Elem., 44, 87-97 (2014) · Zbl 1297.74108
[11] Gu, Y.; Gao, H.; Chen, W.; Zhang, C., A general algorithm for evaluating nearly singular integrals in anisotropic three-dimensional boundary element analysis, Comput. Methods Appl. Mech. Eng., 308, 483-498 (2016)
[12] Liang, Y.; Benedek, T.; Zhang, X.; Liu, Y., Material point method with enriched shape function for crack problems, Comput. Methods Appl. Mech. Eng., 322, 541-562 (2017)
[13] Chen, X.; Zhang, X.; Jia, Z., A robust and efficient polyhedron subdivision and intersection algorithm for three-dimensional MMALE remapping, J. Comput. Phys., 338, 1-17 (2017) · Zbl 1415.76448
[14] Gu, Y.; Fan, C.-M.; Xu, R.-P., Localized method of fundamental solutions for large-scale modelling of two-dimensional elasticity problems, Appl. Math. Lett. (2019)
[15] Zhang, A.; Gu, Y.; Hua, Q.; Chen, W.; Zhang, C., A regularized singular boundary method for inverse Cauchy problem in three-dimensional elastostatics, Adv. Appl. Math. Mech., 10, 1459-1477 (2018)
[16] Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl. Math. Model., 25, 1039-1053 (2001) · Zbl 0994.65111
[17] Gavete, L.; Urena, F.; Benito, J. J.; Salete, E., A note on the dynamic analysis using the generalized finite difference method, J. Comput. Appl. Math., 252, 132-147 (2013) · Zbl 1290.74043
[18] Fan, C. M.; Li, P. W.; Yeih, W. C., Generalized finite difference method for solving two-dimensional inverse Cauchy problems, Inverse Probl. Sci. Eng., 23, 737-759 (2015) · Zbl 1329.65257
[19] Gu, Y.; Wang, L.; Chen, W.; Zhang, C.; He, X., Application of the meshless generalized finite difference method to inverse heat source problems, Int. J. Heat Mass Transf., 108, Part A, 721-729 (2017)
[20] Qu, W.; Gu, Y.; Zhang, Y.; Fan, C.-M.; Zhang, C., A combined scheme of generalized finite difference method and Krylov deferred correction technique for highly accurate solution of transient heat conduction problems, Int. J. Numer. Methods Eng., 117, 63-83 (2019)
[21] Wang, Y.; Gu, Y.; Fan, C.-M.; Chen, W.; Zhang, C., Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng. Anal. Bound. Elem., 94, 94-102 (2018) · Zbl 1403.74282
[22] Huang, J.; Jia, J.; Minion, M., Accelerating the convergence of spectral deferred correction methods, J. Comput. Phys., 214, 633-656 (2006) · Zbl 1094.65066
[23] Huang, J.; Jia, J.; Minion, M., Arbitrary order Krylov deferred correction methods for differential algebraic equations, J. Comput. Phys., 221, 739-760 (2007) · Zbl 1110.65076
[24] Jia, J.; Huang, J., Krylov deferred correction accelerated method of lines transpose for parabolic problems, J. Comput. Phys., 227, 1739-1753 (2008) · Zbl 1134.65064
[25] Qu, W.; Brandon, N.; Chen, D.; Huang, J.; Kress, T., A numerical framework for integrating deferred correction methods to solve high order collocation formulations of ODEs, J. Sci. Comput., 68, 484-520 (2016) · Zbl 1371.65072
[26] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 357-397 (2004) · Zbl 1036.65045
[27] Gavete, L.; Gavete, M. L.; Benito, J. J., Improvements of generalized finite difference method and comparison with other meshless method, Appl. Math. Model., 27, 831-847 (2003) · Zbl 1046.65085
[28] Gavete, L.; Benito, J. J.; Ureña, F., Generalized finite differences for solving 3D elliptic and parabolic equations, Appl. Math. Model., 40, 955-965 (2016) · Zbl 1446.74214
[29] Payre, G. M.J., Influence graphs and the generalized finite difference method, Comput. Methods Appl. Mech. Eng., 196, 1933-1945 (2007) · Zbl 1173.76376
[30] Fan, C. M.; Huang, Y. K.; Li, P. W.; Chiu, C. L., Application of the generalized finite-difference method to inverse biharmonic boundary-value problems, Numer. Heat Transf. Part B, 65, 129-154 (2014)
[31] Gu, Y.; Chen, W.; Zhang, C., Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method, Int. J. Solids Struct., 50, 3460-3471 (2013)
[32] Gao, X. W.; Yang, K., Interface integral BEM for solving multi-medium elasticity problems, Comput. Methods Appl. Mech. Eng., 198, 1429-1436 (2009) · Zbl 1227.74103
[33] Sarler, B., Solution of potential flow problems by the modified method of fundamental solutions: formulations with the single layer and the double layer fundamental solutions, Eng. Anal. Bound. Elem., 33, 1374-1382 (2009) · Zbl 1244.76084
[34] Marin, L.; Lesnic, D., The method of fundamental solutions for nonlinear functionally graded materials, Int. J. Solids Struct., 44, 6878-6890 (2007) · Zbl 1166.80300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.