×

zbMATH — the first resource for mathematics

Data driven computing with noisy material data sets. (English) Zbl 07186068
Summary: We formulate a Data Driven Computing paradigm, termed max-ent Data Driven Computing, that generalizes distance-minimizing Data Driven Computing and is robust with respect to outliers. Robustness is achieved by means of clustering analysis. Specifically, we assign data points a variable relevance depending on distance to the solution and on maximum-entropy estimation. The resulting scheme consists of the minimization of a suitably-defined free energy over phase space subject to compatibility and equilibrium constraints. Distance-minimizing Data Driven schemes are recovered in the limit of zero temperature. We present selected numerical tests that establish the convergence properties of the max-ent Data Driven solvers and solutions.

MSC:
62G99 Nonparametric inference
62B10 Statistical aspects of information-theoretic topics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62R07 Statistical aspects of big data and data science
68T10 Pattern recognition, speech recognition
PDF BibTeX Cite
Full Text: DOI
References:
[1] Kirchdoerfer, T.; Ortiz, M., Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304, 81-101 (2016)
[2] Khinchin, A. I., Mathematical Foundations of Information Theory (1957), Dover Publications: Dover Publications New York
[3] Shannon, C. E., Communication theory of secrecy systems, Bell Syst. Tech. J., 28, 4, 656-715 (1949)
[4] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 3, 379-423 (1948)
[5] Shannon, C. E., A mathematical theory of communication, Bell Syst. Tech. J., 27, 4, 623-656 (1948)
[6] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680 (1983)
[7] van Laarhoven, P. J.M.; Aarts, E. H.L., Simulated Annealing: Theory and Applications (1987), Kluwer Academic Publishers: Kluwer Academic Publishers Boston, MA
[8] Billingsley, P., Probability and Measure (2012), Wiley: Wiley Hoboken, N.J.
[9] Rajan, K.; Zaki, M.; Bennett, K., Informatics based design of materials, Abstr. Pap. Amer. Chem. Soc., 221 (2001), U464-U464
[10] Rajan, K., Materials informatics, Mater. Today, 8, 10, 38-45 (2005)
[11] Broderick, S.; Suh, C.; Nowers, J.; Vogel, B.; Mallapragada, S.; Narasimhan, B.; Rajan, K., Informatics for combinatorial materials science, JOM, 60, 3, 56-59 (2008)
[12] Rajan, K., Materials informatics part I: A diversity of issues, JOM, 60, 3 (2008), 50-50
[13] Rajan, K., Informatics and integrated computational materials engineering: Part II, JOM, 61, 1 (2009), 47-47
[14] Rajan, K., Materials informatics how do we go about harnessing the “big data” paradigm?, Mater. Today, 15, 11 (2012), 470-470
[15] Rajan, K., Materials informatics: The materials “gene” and big data, Annu. Rev. Mater. Res., 45, 153-169 (2015)
[16] Broderick, S.; Rajan, K., Informatics derived materials databases for multifunctional properties, Sci. Technol. Adv. Mater., 16, 1, 013501 (2015)
[17] Kalidindi, S. R., Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials, Int. Mater. Rev., 60, 3, 150-168 (2015)
[18] Kalidindi, S. R.; De Graef, M., Materials data science: Current status and future outlook, Annu. Rev. Mater. Res., 45, 171-193 (2015)
[19] Bishop, C. M., Pattern Recognition and Machine Learning (2006), Springer: Springer New York
[20] Steinwart, I.; Christmann, A., Support Vector Machines (2008), Springer: Springer New York
[21] Guchhait, S.; Banerjee, B., Constitutive error based material parameter estimation procedure for hyperelastic material, Comput. Methods Appl. Mech. Engrg., 297, 455-475 (2015)
[22] Banerjee, B.; Walsh, T. F.; Aquino, W.; Bonnet, M., Large scale parameter estimation problems in frequency-domain elastodynamics using an error in constitutive equation functional, Comput. Methods Appl. Mech. Engrg., 253, 60-72 (2013)
[23] Feissel, P.; Allix, O., Modified constitutive relation error identification strategy for transient dynamics with corrupted data: The elastic case, Comput. Methods Appl. Mech. Engrg., 196, 13-16, 1968-1983 (2007)
[24] Ben Azzouna, M.; Feissel, P.; Villon, P., Robust identification of elastic properties using the modified constitutive relation error, Comput. Methods Appl. Mech. Engrg., 295, 196-218 (2015)
[25] Merzouki, T.; Nouri, H.; Roger, F., Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method, Int. J. Mech. Sci., 89, 487-499 (2014)
[26] Warner, J. E.; Diaz, M. I.; Aquino, W.; Bonnet, M., Inverse material identification in coupled acoustic-structure interaction using a modified error in constitutive equation functional, Comput. Mech., 54, 3, 645-659 (2014) · Zbl 1311.74046
[27] Aguilo, M. A.; Swiler, L.; Urbina, A., An overview of inverse material identification within the frameworks of deterministic and stochastic parameter estimation, Int. J. Uncertain. Quantif., 3, 4, 289-319 (2013)
[28] Promma, N.; Raka, B.; Grediac, M.; Toussaint, E.; Le Cam, J. B.; Balandraud, X.; Hild, F., Application of the virtual fields method to mechanical characterization of elastomeric materials, Int. J. Solids Struct., 46, 3-4, 698-715 (2009)
[29] Latourte, F.; Chrysochoos, A.; Pagano, S.; Wattrisse, B., Elastoplastic behavior identification for heterogeneous loadings and materials, Exp. Mech., 48, 4, 435-449 (2008)
[30] Nguyen, H. M.; Allix, O.; Feissel, P., A robust identification strategy for rate-dependent models in dynamics, Inverse Problems, 24, 6 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.