×

Effective mechanical response of non-linear heterogeneous materials comprising bimodular phases. (English) Zbl 1480.74264

Piecewise linearly elastic composites (subclass of the conewise linear elastic materials) with spherical inclusions and voids in cubic cell are considered by an iterative finite element scheme. The authors give few numerical examples up to \(64\) inclusions per cubic cell with the concentration up to \(0.15\).

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Ambartsumyan, S. A., Elasticity Theory of Different Moduli (1986), China Railway: China Railway Beijing
[2] Amor, H.; Marigo, J.; Maurini, C., Regularized formulation of the variation brittle fracture with unilater contact: numerical experiments, J. Mech. Phys. Solid., 57, 1209-1229 (2009) · Zbl 1426.74257
[3] Barak, M. M.; Currey, J. D.; Weiner, S.; Shahar, R., Are tensile and compressive Young’s moduli of compact bone different?, J. Mech. Behav. Biomed. Mater., 2, 51-60 (2009)
[4] Bechir, H.; Chevalier, L.; Chaouche, M.; Boufala, K., Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant, Eur. J. Mech. Solid., 25, 1, 110-124 (2006) · Zbl 1083.74006
[5] Bert, C. W., Models for fibrous composites with different properties in tension and compression, J. Eng. Mater. Technol., 99, 4, 344-349 (1977)
[6] Bert, C. W.; Reddy, J. N., Mechanics of bimodular composite structures, Mech. Compos. Mater., 323-337 (1983)
[7] Bertoldi, K.; Bigoni, D.; Drugan, W., Nacre: an orthotropic and bimodular elastic material, Compos. Sci. Technol., 68, 6, 1363-1375 (2008)
[8] Bonetti, E.; Bonfanti, G.; Lebon, F.; Rizzoni, R., A model of imperfect interface with damage, Meccanica, 52, 8, 1911-1922 (2017) · Zbl 1367.74006
[9] Bruno, D.; Lato, S.; Sacco, E., Nonlinear analysis of bimodular composite plates under compression, Comput. Mech., 14, 1, 28-37 (1979)
[10] Curnier, A.; He, Q. C.; Zysset, P., Conewise linear elastic materials, J. Elasticity, 37, 2, 1-38 (1994) · Zbl 0828.73016
[11] Destrade, M., Differences in tension and compression in the nonlinearly elastic bending of beams, Int. J. Struct. Changes Solids, 1, 29-37 (2009)
[12] Destrade, M.; Gilchrist, M. D.; Motherway, J. A.; Murphy, J. G., Bimodular rubber buckles early in bending, Mech. Mater., 42, 4, 469-476 (2010)
[13] Du, Z.; Guo, X., Variational principles and the related bounding theorems for bi-modulus materials, J. Mech. Phys. Solid., 73, 183-211 (2014) · Zbl 1349.74293
[14] Du, Z.; Zhang, Y.; Zhang, W.; Guo, X., A new computational framework for materials with different mechanical responses in tension and compression and its applications, Int. J. Solid Struct., 100, 54-73 (2016)
[15] Du, Z.; Zhang, W.; Zhang, Y.; Xue, R.; Guo, X., Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression, Comput. Mech., 1-29 (2018)
[16] Fraternali, F.; Spadea, S.; Ascione, L., Buckling behavior of curved composite beams with different elastic response in tension and compression, Compos. Struct., 100, 280-289 (2003)
[17] Freddi, F.; Royer-Carfagni, G., Regularized variational theories of fracture: a unified approach, J. Mech. Phys. Solid., 58, 1154-1174 (2010) · Zbl 1244.74114
[18] Fremond, M., Non-smooth Thermomechanics (2013), Springer Science & Business Media · Zbl 0990.80001
[19] Gao, J.; Yao, W.; Liu, J., Temperature stress analysis for bi-modulus beam placed on Winkler foundation, Appl. Math. Mech., 38, 7, 921-934 (2017) · Zbl 1367.74026
[20] Hatami-Marbini, H.; Rohanifar, M., Stiffness of bi-modulus hexagonal and diamond honeycombs, J. Mech. Sci. Technol., 33, 4, 1703-1709 (2019)
[21] He, X. T.; Zheng, Z. L.; Sun, J. Y.; Li, Y. M.; Chen, S. L., Convergence analysis of a finite element method based on different moduli in tension and compression, Int. J. Solid Struct., 46, 20, 3734-3740 (2003) · Zbl 1183.74282
[22] He, X. T.; Chen, Q.; Sun, J. Y.; Zheng, Z. L., Large-deflection axisymmetric deformation of circular clamped plates with different moduli in tension and compression, Int. J. Mech. Sci., 62, 1, 103-110 (2012)
[23] He, X. T.; Li, Y. H.; Liu, G. H.; Yang, Z. X.; Sun, J. Y., Non-Linear bending of functionally graded thin plates with different moduli in tension and compression and its general perturbation solution, Appl. Sci., 8, 5, 731 (2018)
[24] Huang, T.; Pan, Q. X.; Jin, J.; Zheng, J. L.; Wen, P. H., Continuous constitutive model for bimodulus materials with meshless approach, Appl. Math. Model., 66, 41-58 (2019) · Zbl 1481.74542
[25] Janmey, P. A.; McCormick, M. E.; Rammensee, S.; Leight, J. L.; Georges, P. C.; MacKintosh, F. C., Negative normal stress in semiflexible biopolymer gels, Nat. Mater., 6, 48-51 (2007)
[26] Jones, R. M., Stress-strain relations for materials with different moduli in tension and compression, AIAA J., 15, 1, 16-23 (1977)
[27] Khan, K.; Patel, B. P.; Nath, Y., Vibration analysis of bimodulus laminated cylindrical panels, J. Sound Vib., 321, 1-2, 166-183 (2009)
[28] Kondo, D.; Welemane, H.; Cormery, F., Basic concepts and models in continuum damage mechanics, Rev. Eur. Génie Civ., 11, 7-8, 927-943 (2007)
[29] Latorre, M.; Mohammadkhah, M.; Simms, C. K.; Montans, F. J., A continuum model for tension-compression asymmetry in skeletal muscle, J. Mech. Behav. Biomed. Mater., 77, 455-460 (2018)
[30] Liu, Y.; Xie, Z.; Van Humbeeck, J.; Delaey, L., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys, Acta Mater., 46, 12, 4325-4338 (1998)
[31] Maceri, F.; Vairo, G., Anisotropic thin-walled beam models: a rational deduction from three-dimensional elasticity, J. Mech. Mater. Struct., 4, 2, 371-394 (2009)
[32] Maceri, F.; Vairo, G., Unilateral problems for laminates: a variational formulation with constraints in dual spaces, (Trends in Computational Contact Mechanics, 58 (2011), Springer: Springer Berlin, Heidelberg), Lecture Notes in Applied and Computational Mechanics · Zbl 1273.74067
[33] Maceri, F.; Vairo, G., Beams comprising unilateral material in frictionless contact: a variational approach with constraints in dual spaces, (Recent Advances in Contact Mechanics, 56 (2013), Springer: Springer Berlin, Heidelberg), Lecture Notes in Applied and Computational Mechanics
[34] Mazars, J.; Berthaud, Y.; Ramtani, S., The unilateral behaviour of damaged concrete, Eng. Fract. Mech., 35, 4-5, 629-635 (1990)
[35] Mielke, A.; Roubicek, T.; Thomas, M., From damage to delamination in nonlinearly elastic materials at small strains, J. Elasticity, 109, 2, 235-273 (2012) · Zbl 1253.74088
[36] Patel, B. P.; Gupta, S. S.; Sarda, R., Free flexural vibration behavior of bimodular material angle-ply laminated composite plates, J. Sound Vib., 286, 1-2, 167-186 (2005)
[37] Proenca, S.; Pituba, J. J.D. C., A damage constitutive model accounting for induced anisotropy and bimodular elastic response, Lat. Am. J. Solid. Struct., 1, 1, 101-117 (2003)
[38] Sacco, E.; Reddy, J., A constitutive model for bimodular materials with an application to plate bending, J. Appl. Mech., 59, 220-221 (1992)
[39] Sun, J. Y.; Zhu, H. Q.; Qin, S. H.; Yang, D. L.; He, X. T., A review on the research of mechanical problems with different moduli in tension and compression, J. Mech. Sci. Technol., 24, 9, 1845-1854 (2010)
[40] Tseng, Y. P.; Jiang, Y. C., Stress analysis of bimodulus laminates using hybrid stress plate elements, Int. J. Solid Struct., 35, 17, 2015-2038 (2003) · Zbl 0933.74066
[41] Tseng, Y. P.; Lee, C. T., Bending analysis of bimodular laminates using a higher-order finite strip method, Compos. Struct., 30, 3, 341-350 (1995)
[42] Wesolowski, Z., Elastic material with different elastic constants in two regions of variability of deformation, Arch. Mech. Stosow., 21, 4, 449-468 (1969) · Zbl 0194.26002
[43] Zhang, H. W.; Zhang, L.; Gao, Q., An efficient computational method for mechanical analysis of bimodular structures based on parametric variational principle, Comput. Struct., 89, 2352-2360 (2011)
[44] Zinno, R.; Greco, F., Damage evolution in bimodular laminated composites under cyclic loading, Compos. Struct., 53, 4, 381-402 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.