zbMATH — the first resource for mathematics

A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. (English) Zbl 0718.62058
An unbiased stochastic estimator of tr(I-A), where A is the influence matrix associated with the calculation of Laplacian smoothing splines, is described. The estimator satisfies a minimum variance criterion and does not require the simulation of a standard normal variable. It uses instead simulations of the discrete random variable which takes the vaues 1, -1 each with probability 1/2. Bounds on the variance of the estimator are obtained using elementary methods. The estimator can be used to approximately minimize generalized cross validation (GCV) when using discretized iterative methods for fitting Laplacian smoothing splines to very large data sets.

62F10 Point estimation
Full Text: DOI
[1] Bates D., In Treatment of Integral Equations by Numerical Methods pp 283– (1982)
[2] DOI: 10.1190/1.1440410 · doi:10.1190/1.1440410
[3] DOI: 10.1007/BF01404567 · Zbl 0377.65007 · doi:10.1007/BF01404567
[4] Girard D., Informatique et Mathématiques Aliquéees de Grenoble (1987)
[5] DOI: 10.1007/BF01390708 · Zbl 0633.65011 · doi:10.1007/BF01390708
[6] Householder A.S., The Theory of Matrices in Numerical Analysis. (1964) · Zbl 0161.12101
[7] Hutchinson, M.F. A summary of some surface fitting and contouring programs for noisy data. CSIRO Division of Mathematics and Statistics Counsulting Report, ACT 84/6. Camberra.
[8] DOI: 10.1145/6497.214322 · Zbl 0607.65003 · doi:10.1145/6497.214322
[9] DOI: 10.1007/BF01389878 · Zbl 0578.65009 · doi:10.1007/BF01389878
[10] O’Sullivan F., J. R. Statist, Soc. B. 47 pp 1– (1985)
[11] DOI: 10.1175/1520-0450(1983)022<1204:TDWFAF>2.0.CO;2 · doi:10.1175/1520-0450(1983)022<1204:TDWFAF>2.0.CO;2
[12] DOI: 10.1007/BF01400921 · Zbl 0522.41011 · doi:10.1007/BF01400921
[13] Wahba, G. How to smooth curves and surfaces with splines and cross validation. Proc. 24th Design of Experiments Conference. pp.79–2–167–192. U.S. Army Research Office Rep.
[14] Wahba, G. Covergence rates of ”Thin Plate” Smoothing Techniques for Curve Estimation. Lecture Notes in Mathematics No. 757. Edited by: Gasser, T. and Rosenblatt, M. Berlin: Springer.
[15] DOI: 10.1214/aos/1176349743 · Zbl 0596.65004 · doi:10.1214/aos/1176349743
[16] DOI: 10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2 · doi:10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.