×

Cutting levels of the winning probability relation of random variables pairwisely coupled by a same Frank copula. (English) Zbl 1471.60023

Summary: We consider the winning probability relation associated with a set of (real-valued) random variables. Its computation requires knowledge of the marginal cumulative distribution functions of the random variables and of the bivariate cumulative distribution function of any couple of these random variables. Here, the copulas underlying these bivariate cumulative distribution functions are assumed to be identical and to belong to the parametric family of Frank copulas, although this most likely does not represent the real dependence and might even not be feasible at all; the Frank copula parameter should thus be regarded as a parameter of the method presented. This winning probability relation is then exploited to establish a strict partial order on the set of random variables. This is realized by computing an appropriate \(\alpha \)-cut that yields a cycle-free crisp relation, resulting in a strict partial order upon computing its transitive closure. For any given Frank copula, we focus on finding the lowest possible value of \(\alpha \), called (minimal) cutting level, such that cutting the winning probability relation strictly above that value results in a crisp relation that is free from cycles of length \(m\), with \(m \in \{3, 4, \dots \}\), irrespective of the marginal cumulative distribution functions of the random variables. We are able to give closed-form expressions for these cutting levels: (1) for all \(m\) when the copula is either the independence copula or one of the two Fréchet-Hoeffding bounds; (2) for any Frank copula when \(m = 4\) or when \(m\) tends to infinity. The relationship between the cutting level, the cycle length and the Frank copula parameter is discussed.

MSC:

60E99 Distribution theory
62H05 Characterization and structure theory for multivariate probability distributions; copulas
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, C. A., Orthogonal polynomials, (Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), Dover: Dover New York), 771-802, Ch. 22 · Zbl 0543.33001
[2] Arcones, M. A.; Kvam, P. H.; Samaniego, F. J., Nonparametric estimation of a distribution subject to a stochastic precedence constraint, J. Am. Stat. Assoc., 97, 170-182 (2002) · Zbl 1073.62520
[3] Boland, P. J.; Singh, H.; Cukic, B., The stochastic precedence ordering with applications in sampling and testing, J. Appl. Probab., 41, 73-82 (2004) · Zbl 1048.60015
[4] Brüggemann, R.; Patil, P., Ranking and Prioritization for Multi-Indicator Systems: Introduction to Partial Order Applications (2011), Springer
[5] De Baets, B.; De Meyer, H., Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity, Fuzzy Sets Syst., 152, 249-270 (2005) · Zbl 1114.91031
[6] De Baets, B.; De Meyer, H., On the cycle-transitive comparison of artificially coupled random variables, Int. J. Approx. Reason., 47, 306-322 (2008) · Zbl 1201.60014
[7] De Baets, B.; De Meyer, H., On a conjecture about the Frank copula family, Fuzzy Sets Syst., 228, 15-28 (2013) · Zbl 1284.62307
[8] De Baets, B.; De Meyer, H., The Frank inequality, Fuzzy Sets Syst., 335, 18-29 (2018) · Zbl 1397.60048
[9] De Baets, B.; De Meyer, H.; De Schuymer, B.; Jenei, S., Cyclic evaluation of transitivity of reciprocal relations, Soc. Choice Welf., 26, 217-238 (2006) · Zbl 1158.91338
[10] De Loof, K.; De Baets, B.; De Meyer, H., A hitchhiker’s guide to poset ranking, Comb. Chem. High Troughput Screen., 11, 734-744 (2008)
[11] De Meyer, H.; De Baets, B.; De Schuymer, B., On the transitivity of the comonotonic and countermonotonic comparison of random variables, J. Multivar. Anal., 98, 177-193 (2007) · Zbl 1114.60018
[12] De Santis, E.; Fantozzi, F.; Spizzichino, F., Relations between stochastic orderings and generalized stochastic precedence, Probab. Eng. Inf. Sci., 29, 329-343 (2015) · Zbl 1370.60029
[13] De Schuymer, B.; De Meyer, H.; De Baets, B., Cycle-transitive comparison of independent random variables, J. Multivar. Anal., 96, 352-373 (2005) · Zbl 1087.60018
[14] De Schuymer, B.; De Meyer, H.; De Baets, B., Extreme copulas and the comparison of ordered lists, Theory Decis., 62, 195-217 (2007) · Zbl 1115.60019
[15] De Schuymer, B.; De Meyer, H.; De Baets, B.; Jenei, S., On the cycle-transitivity of the dice model, Theory Decis., 54, 261-285 (2003) · Zbl 1075.60011
[16] Fodor, J.; Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support (1994), Kluwer Academic Publishers, 272 pp. · Zbl 0827.90002
[17] Frank, M., On the simultaneous associativity of \(F(x, y)\) and \(x + y - F(x, y)\), Aequ. Math., 19, 194-226 (1979) · Zbl 0444.39003
[18] Levy, H., Stochastic Dominance (1998), Kluwer Academic Publishers
[19] Montes, I.; Martinetti, D.; Diaz, S.; Montes, S., Interpretation of statistical preference in terms of location parameters, Inf. Syst. Oper. Res., 53, 1-12 (2015) · Zbl 07683459
[20] Montes, I.; Montes, S., Stochastic dominance and statistical preference for random variables coupled by an Archimedean copula or by the Frechet-Hoeffding upper bound, J. Multivar. Stat., 143, 275-298 (2016) · Zbl 1384.60061
[21] Montes, I.; Montes, S.; De Baets, B., Multivariate winning probabilities, Fuzzy Sets Syst., 362, 129-143 (2019) · Zbl 1423.60037
[22] Nelsen, R., An Introduction to Copulas (2006), Springer: Springer New York · Zbl 1152.62030
[23] Shaked, M.; Shanthikumar, J. G., Stochastic Orders (2007), Springer-Verlag: Springer-Verlag New York · Zbl 1111.62016
[24] Steinhaus, H.; Trybuła, S., On a paradox in applied probabilities, Bull. Pol. Acad. Sci., 59, 67-69 (1959) · Zbl 0083.14202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.