×

zbMATH — the first resource for mathematics

The dissipative structure of shock waves in dense gases. (English) Zbl 0717.76075
Summary: The present study provides a detailed description of the dissipative structure of shock waves propagating in dense gases which have relatively large specific heats. The flows of interest are governed by the usual Navier-Stokes equations supplemented by realistic equations of state and realistic models for the density dependence of the viscosity and thermal conductivity. New results include the first computation of the structure of finite-amplitude expansion shocks and examples of shock waves in which the thickness increases, rather than decreases, with strength. A new phenomenon, referred to as impending shock splitting, is also reported.

MSC:
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zel’dovich, Zh. Eksp. Teor. Fiz. 4 pp 363– (1946)
[2] DOI: 10.1017/S002211207300011X · Zbl 0265.76085 · doi:10.1017/S002211207300011X
[3] DOI: 10.1063/1.1693693 · Zbl 0236.76053 · doi:10.1063/1.1693693
[4] DOI: 10.1063/1.866388 · Zbl 0617.76072 · doi:10.1063/1.866388
[5] DOI: 10.1063/1.865555 · Zbl 0623.76071 · doi:10.1063/1.865555
[6] DOI: 10.1017/S0022112084000975 · Zbl 0577.76073 · doi:10.1017/S0022112084000975
[7] Cramer, Virginia Polytechnic Institute and State University Rep. 1 pp 1894– (1989)
[8] DOI: 10.1063/1.857514 · doi:10.1063/1.857514
[9] Vch, J. Fluid Mech. 199 pp 281– (1989)
[10] DOI: 10.1063/1.866082 · doi:10.1063/1.866082
[11] Bethe, Office Sci. Res. and Dm. Rep. none pp none– (1942)
[12] Taylok, Proc. R. Soc. Lond. 84 pp 371– (1910)
[13] DOI: 10.1021/i160013a003 · doi:10.1021/i160013a003
[14] DOI: 10.1103/RevModPhys.61.75 · Zbl 1129.35439 · doi:10.1103/RevModPhys.61.75
[15] Martin, AIChE J. 323 pp 173– (1955)
[16] Lee-Bapty, Phil. Trans. R. Soc. Land. 323 pp 173– (1987)
[17] DOI: 10.1063/1.1694004 · doi:10.1063/1.1694004
[18] Cramer, J. Fluid Mech. 221 pp 233– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.