×

A measure of concentration robustness in a biochemical reaction network and its application on system identification. (English) Zbl 1480.92091

Summary: Variations in the concentrations of biomolecular species in vivo are inevitable, but regulation systems will act to maintain concentrations of certain species within proper levels. Such a ubiquitous trait in biological systems is the so-called concentration robustness. In this work, we study the concentration robustness of glycerol metabolism system, in which some mechanistic details are not clearly known and the true metabolic system need to be identified from all possible ones. We give a quantitative index to measure the concentration robustness of the considered system, which is characterized as the maximum relative variation in certain entries of steady state caused by the perturbations of operating parameters. Based on the proposed robustness index, a minimax dynamic optimization problem is developed for identifying the kinetic parameters as well as the unknown metabolic mechanisms. A scheme based on Monte-Carlo method is proposed to evaluate the robustness index approximately and convergence result is obtained. An algorithm is constructed to solve the dynamic optimization problem and numerical results are presented to show that the proposed robustness index could measure concentration robustness of the considered system properly.

MSC:

92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
93B35 Sensitivity (robustness)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Holling, C. S., Understanding the complexity of economic,ecological, and social systems, Ecosystems, 4, 390-405 (2001)
[2] de, V. J.; Hermisson, J.; Wagner, G. P.; Meyers, L. A., Perspective: evolution and detection of genetic robustness, Evolution, 57, 1959-1972 (2003)
[3] Kitano, H., Towards a theory of biological robustness, Mol. Syst. Biol., 3, 1-7 (2007)
[4] Alon, U.; Surette, M. G.; Barkai, N.; Leibler, S., Robustness in bacterial chemotaxis, Nature, 397, 168-171 (1999)
[5] Eldar, A.; Dorfman, R.; Weiss, D., Robustness of the BMP morphogen gradient in drosophila embryonic patterning, Nature, 419, 304-308 (2002)
[6] Article 67.
[7] Alderson, D. L.; Doyle, J. C., Contrasting views of complexity and their implications for network-centric infrastructures, IEEE Trans. Syst. Man Cybern. A Syst. Hum., 40, 839-852 (2010)
[8] Morohashi, M.; Winn, A. E.; Borisuk, M. T.; Bolouri, H.; Doyle, J.; Kitano, H., Robustness as a measure of plausibility in models of biochemical networks, J. Theor. Biol., 216, 19-30 (2002)
[9] Savageau, M. A.; Coelho, P. M.; Fasani, R. A.; Tolla, D. A.; Salvador, A., Phenotypes and tolerances in the design space of biochemical systems, Proc. Natl. Acad. Sci., 106, 6435-6440 (2009)
[10] Yuan, J.; Zhang, Y.; Ye, J.; Xie, J.; Teo, K. L.; Zhu, X.; Feng, E.; Yin, H.; Xiu, Z., Robust parameter identification using parallel global optimization for a batch nonlinear enzyme-catalytic time-delayed process presenting metabolic discontinuities, Appl. Math. Model., 46, 554-571 (2017) · Zbl 1443.92042
[11] Ciliberti, S.; Martin, O. C.; Wagner, A., Robustness can evolve gradually in complex regulatory gene networks with varying topology, PLOS Comput. Biol., 3, 2, 164-173 (2007)
[12] Chen, B. S.; Wang, Y. C.; Wu, W. S.; Li, W. H., A new measure of the robustness of biochemical networks, Bioinformatics, 21, 11, 2698-2705 (2005)
[13] Zhai, J.; Ye, J.; Wang, L., Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture, Nonlinear Anal. Real World Appl., 12, 2730-2741 (2011) · Zbl 1225.37112
[14] Yan, H.; Zhang, X.; Ye, J., Identification and robustness analysis of nonlinear hybrid dynamical system concerning glycerol transport mechanism, Comput. Chem. Eng., 40, 171-180 (2012)
[15] Wang, L.; Yuan, J.; Li, Y.; Xiu, Z., Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness, Numer. Algebra Control Optim., 4, 2, 103-113 (2014) · Zbl 1341.49047
[16] G. Cheng, L. Wang, R. Loxton, Q. Lin, Robust optimal control of a microbial batch culture process, J. Optim. Theory Appl. doi:10.1007/s10957-014-0654-z. · Zbl 1326.49065
[17] Sun, Y. Q.; Qi, W. T.; Teng, H., Mathematical modeling of glycerol fermentation by klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane, Biochem. Eng. J., 38, 1, 22-32 (2008)
[18] Sun, Y. Q.; Ye, J. X.; Mu, X. J., Nonlinear mathematical simulation and analysis of Dha Regulon for glycerol metabolism in Klebsiella pneumoniae, Chin. J. Chem. Eng., 20, 5, 958-970 (2012)
[19] Richery, D. P.; Lin, E. C., Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli, J. Bacteriol., 12, 784-790 (1972)
[20] Heller, K. B.; Lin, E. C.; Wilson, T. H., Substrate specificity and transport properties of the glycerol facilitator of escherichia coli, J. Bacteriol., 144, 274-278 (1980)
[21] Zeng, A.-P.; Ross, A.; Biebl, H., Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation, Biotechnol. Bioeng., 44, 902-911 (1994)
[22] Chen, K. K.; Liu, H. J.; Liu, D. H., Multiple growth inhibition of klebsiella pneumoniae in 1,3-propanediol fermentation, Biotechnol. Lett., 27, 19-22 (2005)
[23] Wang, W.; Sun, J. B.; Hartlep, M.; Deckwer, W. D.; Zeng, A. P., Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae, Biotechnol. Bioeng, 83, 5, 525-536 (2003)
[24] Barbirato, F.; Grivet, J. P.; Soucaille, P.; Bories, A., 3-hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species, Appl. Environ. Microbiol., 62, 4, 1448-1451 (1996)
[25] Zheng, P.; Wereath, K.; Sun, J. B.; Heuvel, J.; Zeng, A. P., Overexpression of genes of the Dha Regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in klebsiella pneumoniae, Process Biochem., 41, 2160-2169 (2006)
[26] Ye, J.; Feng, E.; Xiu, Z., Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures, Appl. Math. Comput., 207, 307-318 (2009) · Zbl 1163.34031
[27] Rockafellar, R. T., Directional differentiability of the optimal value function in a nonlinear programming problem, Math. Program. Stud., 21, 213-226 (1984) · Zbl 0546.90088
[28] Rockafellar, R. T., Differentiability properties of the minimum value in an optimization problem depending on parameters, Proceedings of the International Congress of Mathematicians, Warszawa, 1419-1423 (1983) · Zbl 0559.49011
[29] Stelling, J.; Klamt, S.; Bettenbrock, K.; Schuster, S.; Gilles, E. D., Metabolic network structure determines key aspects of functionality and regulation, Nature, 420, 190-193 (2002)
[30] Wilhelm, T.; Behre, J.; Schuster, S., Analysis of structural robustness of metabolic networks, Syst. Biol., 1, 114-120 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.