×

zbMATH — the first resource for mathematics

On the asymptotic exactness of error estimators for linear triangular finite elements. (English) Zbl 0716.65098
See the preview in Zbl 0707.65072.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ainsworth, M., Craig, A.W.: A posteriori error estimators in the finite element method. Num. Anal. Rep. NA 88/03, Durham, England, 1988 · Zbl 0757.65109
[2] Andreev, A.B. Lazarov, R.D.: Superconvergence of the gradient for quadratic triangular finite elements. Numer. Methods for PDEs,4, 15-32 (1988) · Zbl 0644.65082
[3] Babu?ka, I., Miller, A.: A-posteriori error estimates and adaptive techniques for the finite element method. Tech. Note BN-968, IPST, University of Maryland, 1981
[4] Babu?ka, I., Miller, A.: A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Comp. Methods Appl. Mech. Engrg.61, 1-40 (1987) · Zbl 0593.65064
[5] Babu?ka, I., Rheinboldt, W.C.: A posteriori error estimators in the finite element method. Internat. J. Numer. Meth. Eng.12, 1597-1615 (1978) · Zbl 0396.65068
[6] Babu?ka, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.15, 736-754 (1978) · Zbl 0398.65069
[7] Babu?ka, I., Rheinboldt, W.C.: Analysis of optimal finite element meshes inR 1. Math. Comp.33, 435-463 (1979) · Zbl 0431.65055
[8] Babu?ka, I., Rheinboldt, W.C.: A posteriori error analysis of finite element solutions for one-dimensional problems. SIAM J. Numer. Anal.18, 565-589 (1981) · Zbl 0487.65060
[9] Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp.44, 283-301 (1985) · Zbl 0569.65079
[10] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North Holland 1978 · Zbl 0383.65058
[11] Dur?n, R.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal.5, 985-988 (1983) · Zbl 0523.41020
[12] Dur?n, R., Muschietti, M.A., Rodriguez, R.: Asymptotically exact error estimators for rectangular finite elements. (To appear)
[13] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Boston: Pitman 1985 · Zbl 0695.35060
[14] Hinton, E., Ozakca, M., Rao, N.V.R.: Adaptative analysis of thin shells using facet elements. CR/950/90, University College of Swansea (1990)
[15] Kr?z?k, M., Neittaanm?ki, P.: Superconvergence phenomenom in the finite element method arising from averaging gradients. Numer. Math.45, 105-116 (1984) · Zbl 0575.65104
[16] Levine, N.: Stress sampling points for linear triangles in the finite element method. IMA J. Numer. Anal.5, 407-427 (1985) · Zbl 0584.65067
[17] Lin, Q., L?, T.: Asymptotic expansions for finite element approximation of elliptic problems on polygonal domains. In: Computing Methods in Applied Sciences and Engineering, Proc. Sixth Int. Conf. Versailles, 1983. L.N. in Comp. Sci., North-Holland, INRIA, pp. 317-321 (1984)
[18] Mesztenyi, C., Szymczak, W.: FEARS user’s manual for UNIVAC 1100. Tech. Note BN-991, IPST, University of Maryland (1982)
[19] Oganesjan, L.A., Ruhovec, L.A.: Investigation of the convergence rate of variational-difference schemes for elliptic second order equations in a two dimensional domain with a smooth boundary. Z. Vychisl. Mat. i Mat. Fiz.9, 1102-1120 (1969) [Translation in USSR Comput. Math. Math. Phys.9, 153-188 (1969)]
[20] Rivara, M.C.: EXPDES user’s manual. Catholic Univ., Leuven, Belgium (1984)
[21] Rivara, M.C.: Adaptive multigrid software for the finite element method. Ph.D. dissertation, Catholic. Univ., Leuven, Belgium (1984) · Zbl 0578.65112
[22] Verf?rth, R.: A posteriori error estimators for the Stokes equations. Numer. Math.55, 309-325 (1989) · Zbl 0674.65092
[23] Wheeler, M.F., Whiteman, J.R.: Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations. Numer. Methods for PDEs,3, 357-374 (1987) · Zbl 0706.65108
[24] Whiteman, J.R., Goodsell, G.: Some gradient superconvergence results in the finite element method. In: Numerical Analysis and Parallel Processing. Lecture Notes in Math. # 1397. Berlin Heidelberg New York: Springer 182-259 · Zbl 0674.65076
[25] Zl?mal, M.: Some superconvergence results in the finite element method. In: Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. # 606, pp. 353-362. Berlin Heidelberg New York: Springer 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.