×

zbMATH — the first resource for mathematics

Special geometry. (English) Zbl 0716.53068
A special manifold M is an allowed target manifold for the vector multiplets of \(D=4\), \(N=2\) supergravity. The existence of a holomorphic \(Sp(2n+2,R)\otimes GL(1,C)-\) vector bundle over M with a nowhere vanishing holomorphic section \(\Omega\) is a characterization of a special manifold M of complex dimension n. The author gives a global description of special geometries and studies their principal properties.
Reviewer: A.Bejancu

MSC:
53C80 Applications of global differential geometry to the sciences
83E50 Supergravity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zumino, B.: Phys. Lett.87B, 203 (1979)
[2] Witten, E., Bagger, J.: Quantization of Newton’s constant in certain supergravity theories. Phys. Lett.115B, 202 (1982)
[3] Bagger, J., Witten, E.: Matter Couplings inN=2 Supergravity. Nucl. Phys.B222, 1 (1983) · doi:10.1016/0550-3213(83)90605-3
[4] de Wit, B., Lauwers, P. G., Van Proeyen, A.: Nucl. Phys.B255, 569 (1985) · doi:10.1016/0550-3213(85)90154-3
[5] Seiberg, N.: Nucl. Phys.B303, 286 (1988) · doi:10.1016/0550-3213(88)90183-6
[6] Dixon, L. J., Kaplunovsky, V., Louis, J.: On Effective Field Theories Describing (2, 2) Vacua of the Heterotic String. SLAC-PUB-4959 (1989)
[7] Cecotti, S., Ferrara, S., Girardello, L.: Phys. Lett.B213, 443 (1988); Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories. Int. J. Mod. Phys.4, 2475 (1989); and Phys. Lett.213B, 443 (1988) · Zbl 0681.58044
[8] Strominger, A.: Yukawa couplings in superstring compactification. Phys. Rev. Lett.55, 2547 (1985) · doi:10.1103/PhysRevLett.55.2547
[9] Ferrara, S., Strominger, A.:N=2 Spacetime Supersymmetry and Calabi-Yau Moduli Space. World Scientific. Arnowitt et al. (eds.) Proc. of the Superstrings ’89 Workshop (1989)
[10] Periwal, V., Strominger, A.: Kähler Geometry of the Moduli Space ofN=2 Superconformal Field Theories. Institute for Theoretical Physics. (1989) Phys. Lett.B335, 261 (1990)
[11] Zamolodchikov, A. B.: JETP Lett.43, 730 (1986)
[12] Gepner, D.: A comment on the chiral algebras of quotient superconformal field theories. Princeton preprint, PUPT-1130 (May 1989); Phys. Lett.B222, 207 (1989); Scalar field theory and string compactification, Princeton preprint, PUPT-1115 (December 1988); Princeton preprint, PUPT-1121 (April 1989), lectures at Spring School on Superstrings, Trieste, Italy, April 3–14, 1989; Nucl. Phys.B311, 191 (1988); String theory on Calabi-Yau manifolds: The three generation case, Princeton preprint, Print-88-0085 (December 1987); Phys. Lett.B199, 380 (1987); Nucl. Phys.B296, 757 (1988)
[13] Lerche, W., Vafa, C., Warner, N. P.: Chiral rings inN=2 superconformal field theories, HUTP-88/A065, February 1989; addendum, HUTP-88/A065-Add
[14] Strominger, A., Witten, E.: New manifolds for superstring compactifications. Commun. Math. Phys.101, 341 (1985) · Zbl 0643.53069 · doi:10.1007/BF01216094
[15] Candelas, P.: Nucl. Phys.B298, 458 (1988) · doi:10.1016/0550-3213(88)90351-3
[16] Bryant, R., Griffiths, P.: In: Arithmetic and Geometry, vol. II, p. 77, Artin, M., Tate, J. (eds.). Boston: Birkhauser 1983 · Zbl 0526.53018
[17] Tian, G.: In: Mathematical aspects of string theory. p. 629, Yau, S.-T. (ed.). Singapore: World Scientific 1987
[18] Candelas, P., Green, P. S., Hübsch, T.: Rolling among Calabi-Yau vacua. In: Superstrings ’89. Green, M., Iengo, R., Rand, S., bar-Daemi, Sezgin, E., Strominger, A. (eds.). Singapore: World Scientific 1990; Connected Calabi-Yau Compactifications (Other worlds are just around the corner), UTTG-28-88, January 1990
[19] Griffiths, P.: Topics in trancendental algebraic geometry. Princeton, NJ: Princeton University Press: 1984 · Zbl 0528.00004
[20] Peters, C., Steenbrink, J.: Classification of algebraic and analytic manifolds. Katata Symposium Proceedings 1982 Sponsored by the Taniguchi Foundation. Ueno, K., Coates, J., Helgason, S. (eds.): Infinitesimal Variations of Hodge Structure and the Generic Torelli Problem for Projective Hypersurfaces, Vol.39, pp. 399–464, Boston: Birkhauser
[21] Hodge, W. V. O.: The theory and application of harmonic structures. New York: University Press 1952 · Zbl 0048.15702
[22] Griffiths, P.: Periods of Integrals on Algebraic Manifolds I, II. Am. J. Math.90, 568, 805 (1970) · Zbl 0169.52303 · doi:10.2307/2373545
[23] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: John Wiley 1978 · Zbl 0408.14001
[24] Ferrara, S.: Effective Lagrangians for superstring compactifications, CERN-TH-5293/89 (February 1989); Recent issues on the moduli space of 2-d superconformal field theories, UCLA/88/TEP/29 (August 1988)
[25] Cremmer, E., Kounnas, C., Van Proeyen, A., Derendinger, J. P., Ferrara, S., de Wit, B., Girardello, L.: Nucl. Phys.B250, 385 (1985) · doi:10.1016/0550-3213(85)90488-2
[26] Dixon, L. J.: PUPT-1074 (October 1987), lectures given at the 1987 ICTP Summer Workshop in High Energy Physics and Cosmology, Trieste, Italy, June 29–August 7, 1987
[27] Ferrara, S., Lüst, D., Shapere, A., Theisen, S.: Modular invariance in supersymmetric field theories, CERN-HEP-89/25 (April 1989)
[28] Reid, M.: The Moduli Space of 3-Folds withK=0 may Nevertheless be Irreducible. Math. Ann.278, 329 (1987) · Zbl 0649.14021 · doi:10.1007/BF01458074
[29] Vafa, C.: Quantum symmetries of string vacua, HUTP-89/A021, May 1989; String vacua and orbifoldized L-G models, HUTP-89/A018, April 1989
[30] Shevitz, D.: Global Structure of ac=9 Type (2, 2) Moduli Space. UCSB preprint (1989)
[31] Strominger, A.: Topology of superstring compactification. In: Proc. of the Santa Barbara Workshop on Unified String Theories. Green and Gross (eds.). Singapore: World Scientific 1986 · Zbl 0648.53063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.