zbMATH — the first resource for mathematics

Simulated annealing and quantum detailed balance. (English) Zbl 0716.47039
Summary: The analogue of simulated annealing is considered for time-inhomogeneous evolutions of a von Neumann algebra of operators, whose instantaneous generator at each time t satisfies the quantum detailed balance condition with respect to a faithful normal state which depends on time through a suitable cooling schedule. Convergence to the (nonfaithful) limiting state is proved under the usual kinds of assumptions. The approach is interesting in view of possible applications to stochastic Ising models and to Boltzmann machines.

47N55 Applications of operator theory in statistical physics (MSC2000)
82B10 Quantum equilibrium statistical mechanics (general)
46N55 Applications of functional analysis in statistical physics
46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
46L60 Applications of selfadjoint operator algebras to physics
Full Text: DOI
[1] R. Alicki, On the quantum detailed balance condition for non-Hamiltonian systems,Rep. Math. Phys. 10:249-258 (1976). · Zbl 0363.60114 · doi:10.1016/0034-4877(76)90046-X
[2] F. Aluffi-Pentini, V. Parisi, and F. Zirilli, Global optimization and stochastic differential equations,J. Opt. Theory Appl. 47:1-16 (1985). · Zbl 0549.65038 · doi:10.1007/BF00941312
[3] B. Apolloni, N. Cesa-Bianchi, and D. de Falco, A numerical implementation of ?quantum annealing,? Preprint BiBoS Nr. 324/88 (1988); B. Apolloni, C. Carvalho, and D. de Falco, Quantum stochastic optimization, Preprint BiBoS Nr. 327/88 (1988).
[4] H. J. Brascamp, Equilibrium states for a classical lattice gas,Commun. Math. Phys. 18:82-96 (1970). · doi:10.1007/BF01649640
[5] V. Cerny, A thermodynamical approach to the travelling salesman problem. An efficient simulation algorithm,J Opt. Theory Appl. 45:41-51 (1985). · Zbl 0534.90091 · doi:10.1007/BF00940812
[6] T. S. Chiang, K. R. Hwang, and S. J. Sheu, Diffusion for global optimization inR n ,SIAM J. Control Opt. 25:737-753 (1987). · Zbl 0622.60093 · doi:10.1137/0325042
[7] A. Frigerio, Stationary states of quantum dynamical semigroups,Commun. Math. Phys. 63:269-276 (1978). · Zbl 0404.46050 · doi:10.1007/BF01196936
[8] A. Frigerio and M. Verri, Long-time asymptotic properties of dynamical semigroups onW *-algebras,Math. Z. 180:275-286 (1982). · Zbl 0481.46031 · doi:10.1007/BF01318911
[9] A. Frigerio, Time-inhomogeneous and nonlinear quantum evolutions, inQuantum Probability and Applications V, L. Accardi and W. von Waldenfels, eds., (Springer-Verlag, Berlin, to appear). · Zbl 0709.60104
[10] S. B. Gelfand and S. K. Mitter, Simulated annealing, inStochastics in Combinatorial Optimization, G. Andreatta, F. Mason, and P. Serafini, eds. (World Scientific, Singapore, 1987). · Zbl 0663.90073
[11] S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images,IEEE Trans. Pattern Anal. Mack Intell. 6:721-741 (1984). · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[12] S. Geman and C. R. Hwang, Diffusions for global optimization,SIAM J Control Opt. 24:1031-1043 (1986). · Zbl 0602.60071 · doi:10.1137/0324060
[13] B. Gidas, Non-stationary Markov chains and convergence of the annealing algorithm,J. Stat. Phys. 39:73-131 (1985). · Zbl 0642.60049 · doi:10.1007/BF01007975
[14] B. Gidas, Global optimization via the Langevin equation, inProceedings 24th IEEE Conference on Decision and Control (1985), pp. 774-777.
[15] R. J. Glauber, Time-dependent statistics of the Ising model,J. Math. Phys. 4:294-307 (1963). · Zbl 0145.24003 · doi:10.1063/1.1703954
[16] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups ofN-level systems,J. Math. Phys. 17:821-825 (1976). · doi:10.1063/1.522979
[17] B. Hajek, Cooling schedules for optimal annealing,Math. Oper. Res. 13:311-329 (1988). · Zbl 0652.65050 · doi:10.1287/moor.13.2.311
[18] G. E. Hinton, T. J. Sejnowski, and D. H. Ackley, Boltzmann machines: Constraint satisfaction machines that learn, Department of Computer Science Technical Report CMU-CS-84-119, Carnegie-Mellon University, Pittsburgh, Pennsylvania (1984).
[19] R. Holley and D. Stroock, Simulated annealing via Sobolev inequalities,Commun. Math. Phys. 115:553-569 (1988). · Zbl 0643.60092 · doi:10.1007/BF01224127
[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,Science 220:621-680 (1983). · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[21] A. Kossakowski, A. Frigerio, V. Gorini, and M. Verri, Quantum detailed balance and KMS condition,Commun. Math. Phys. 57:97-110 (1977);Erratum, Commun. Math. Phys. 60:96 (1978). · Zbl 0374.46060 · doi:10.1007/BF01625769
[22] G. Lindblad, On the generators of quantum dynamical semigroups,Commun. Math. Phys. 48:119-130 (1976). · Zbl 0343.47031 · doi:10.1007/BF01608499
[23] M. Lundy and A. Mees, Convergence of an annealing algorithm,Math. Progr. 34:111-124 (1986). · Zbl 0581.90061 · doi:10.1007/BF01582166
[24] P. A. Martin, Modèles en mecanique statistique des processus irreversibles,Lecture Notes in Physics, Vol. 103 (Springer, Berlin, 1979).
[25] J. Quaegebeur, G. Stragier, and A. Verbeure, Quantum detailed balance,Ann. Inst. H. Poincaré 41:25-36 (1984). · Zbl 0581.46065
[26] C. Radin, Approach to equilibrium for a simple model,J. Math. Phys. 11:2945-2955 (1970). · doi:10.1063/1.1665079
[27] D. W. Robinson, Strongly positive semigroups and faithful invariant states,Commun. Math. Phys. 85:129-142 (1982). · Zbl 0532.46040 · doi:10.1007/BF02029138
[28] H. Spohn, An algebraic condition for the approach to equilibrium of an openN-level system,Lett. Math. Phys. 2:33-38 (1977). · Zbl 0366.47019 · doi:10.1007/BF00420668
[29] P. J. M. van Laarhoven and E. H. L. Aarts, (eds.)Simulated Annealing: Theory and Applications (Reidel, Dordrecht, 1987). · Zbl 0643.65028
[30] A. Verbeure, Detailed balance and critical slowing down, inQuantum Probability and Applications III, L. Accardi and W. von Waldenfels, eds. (Springer, Berlin, 1988), pp. 354-362.
[31] L. Younes, Estimation and annealing for Gibbsian fields,Ann. Inst. H. Poincaré B 24:269-294 (1988). · Zbl 0651.62091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.