×

Splitting loops and necklaces: variants of the square peg problem. (English) Zbl 1461.51010

Summary: Toeplitz conjectured that any simple planar loop inscribes a square. Here we prove variants of Toeplitz’s square peg problem. We prove Hadwiger’s 1971 conjecture that any simple loop in \(3\)-space inscribes a parallelogram. We show that any simple planar loop inscribes sufficiently many rectangles that their vertices are dense in the loop. If the loop is rectifiable, there is a rectangle that cuts the loop into four pieces which can be rearranged to form two loops of equal length. (The previous two results are independently due to Schwartz.) A rectifiable loop in \(d\)-space can be cut into \((r-1)(d+1)+1\) pieces that can be rearranged by translations to form \(r\) loops of equal length. We relate our results to fair divisions of necklaces in the sense of Alon and to Tverberg-type results. This provides a new approach and a common framework to obtain inscribability results for the class of all continuous curves.

MSC:

51M04 Elementary problems in Euclidean geometries
53A04 Curves in Euclidean and related spaces
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Akopyan, A. and Avvakumov, S., ‘Any cyclic quadrilateral can be inscribed in any closed convex smooth curve’, Forum Math. Sigma6 (2018), E7. · Zbl 1395.53001
[2] Alishahi, M. and Meunier, F., ‘Fair splitting of colored paths’, Electron. J. Combin.24(3) (2017), #P3.41. · Zbl 1369.05157
[3] Alon, N., ‘Splitting necklaces’, Adv. Math.63(3) (1987), 247-253. · Zbl 0635.05008
[4] Asada, M., Frick, F., Pisharody, V., Polevy, M., Stoner, D., Tsang, L. H. and Wellner, Z., ‘Fair division and generalizations of Sperner- and KKM-type results’, SIAM J. Discrete Math.32(1) (2018), 591-610. · Zbl 1385.54013
[5] Blagojević, P. V. M., Frick, F. and Ziegler, G. M., ‘Barycenters of polytope skeleta and counterexamples to the topological Tverberg conjecture, via constraints’, J. Eur. Math. Soc.21(7) (2019), 2107-2116. · Zbl 1428.52008
[6] Blagojević, P. V. M., Matschke, B. and Ziegler, G. M., ‘Optimal bounds for the colored Tverberg problem’, J. Eur. Math. Soc.17(4) (2015), 739-754. · Zbl 1327.52009
[7] Blagojević, P. V. M. and Soberón, P., ‘Thieves can make sandwiches’, Bull. Lond. Math. Soc.50(1) (2018), 108-123. · Zbl 1390.52008
[8] Blagojević, P. V. M. and Ziegler, G. M., ‘Beyond the Borsuk-Ulam theorem: the topological Tverberg story’, inA Journey through Discrete Mathematics (Springer, Cham, 2017), 273-341. · Zbl 1470.52007
[9] de Longueville, M. and Živaljević, R., ‘Splitting multidimensional necklaces’, Adv. Math.218(3) (2008), 926-939. · Zbl 1154.05006
[10] Dold, A., ‘Simple proofs of some Borsuk-Ulam results’, Contemp. Math.19 (1983), 65-69. · Zbl 0521.55002
[11] Emch, A., ‘On some properties of the medians of closed continuous curves formed by analytic arcs’, Amer. J. Math.38(1) (1916), 6-18. · JFM 46.0832.03
[12] Frick, F., ‘Counterexamples to the topological Tverberg conjecture’, Oberwolfach Rep.12(1) (2015), 318-321.
[13] Guggenheimer, H., ‘Finite sets on curves and surfaces’, Israel J. Math.3(2) (1965), 104-112. · Zbl 0135.39904
[14] Guggenheimer, H., ‘Proof of a conjecture of H. Hadwiger’, Elem. Math.29 (1974), 35-36. · Zbl 0275.53001
[15] Hadwiger, H., ‘Ungelöste Probleme Nr. 53’, Elem. Math.26 (1971), 58.
[16] Hobby, C. R. and Rice, J. R., ‘A moment problem in L_1 approximation’, Proc. Amer. Math. Soc.16(4) (1965), 665-670. · Zbl 0142.09802
[17] Hugelmeyer, C., ‘Every smooth Jordan curve has an inscribed rectangle with aspect ratio equal to \(\sqrt{3} \)’, Preprint, 2018, .
[18] Karasev, R., Roldán-Pensado, E. and Soberón, P., ‘Measure partitions using hyperplanes with fixed directions’, Israel J. Math.212(2) (2016), 705-728. · Zbl 1344.52006
[19] Mabillard, I. and Wagner, U., ‘Eliminating higher-multiplicity intersections, I. A whitney trick for tverberg-type problems’, Preprint, 2015, .
[20] Makeev, V., ‘Quadrangles inscribed in a closed curve and the vertices of a curve’, J. Math. Sci.131(1) (2005), 5395-5400. · Zbl 1145.51300
[21] Matoušek, J., ‘Using the Borsuk-Ulam Theorem’, inLectures on Topological Methods in Combinatorics and Geometry, 2nd edn, (Springer, Heidelberg, 2008). · Zbl 1234.05002
[22] Matschke, B., ‘Equivariant topology methods in discrete geometry’, PhD Thesis, Freie Universität Berlin, 2011.
[23] Matschke, B., ‘A survey on the square peg problem’, Not. Amer. Math. Soc.61(4) (2014), 346-352. · Zbl 1338.51017
[24] Matschke, B., ‘Quadrilaterals inscribed in convex curves’, Preprint, 2018, . · Zbl 1472.53007
[25] Meyerson, M. D., ‘Balancing acts’, Topol. Proc.6 (1981), 59-75. · Zbl 0493.57003
[26] Nielsen, M. J., ‘Rhombi inscribed in simple closed curves’, Geom. Ded.54(3) (1995), 245-254. · Zbl 0844.51010
[27] Pak, I., Lectures on Discrete and Polyhedral Geometry, , 2010.
[28] Schnirelman, L. G., ‘On some geometric properties of closed curves’, Uspekhi Mat. Nauk10 (1944), 34-44 (in Russian). · Zbl 0060.35107
[29] Schwartz, R. E., ‘A trichotomy for rectangles inscribed in Jordan loops’, Preprint, 2018,. · Zbl 1448.51008
[30] Stromquist, W., ‘Inscribed squares and square-like quadrilaterals in closed curves’, Mathematika36(2) (1989), 187-197. · Zbl 0669.53002
[31] Tao, T., ‘An integration approach to the Toeplitz square peg problem’, Forum Math. Sigma5 (2017), E30. · Zbl 1422.52001
[32] Toeplitz, O., ‘Ueber einige Aufgaben der Analysis situs’, Verhandlungen der Schweizerischen Naturforschenden Gesellschaft in Solothurn4(197) (1911), 29-30.
[33] Vrećica, S. T. and Živaljević, R. T., ‘Fulton-MacPherson compactification, cyclohedra, and the polygonal pegs problem’, Israel J. Math.184(1) (2011), 184-221. · Zbl 1259.52005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.