×

A fast second-order implicit difference method for time-space fractional advection-diffusion equation. (English) Zbl 07150134

Summary: In this paper, we consider a fast second-order implicit difference method to approximate a class of linear time-space fractional variable coefficients advection-diffusion equation. To begin with, an implicit difference scheme is constructed based on \(L\)2-1\(_\sigma\) formula [Alikhanov AA. 2015;280:424-38.] for the temporal discretization and weighted and shifted Grünwald method for the spatial discretization. Then, the unconditional stability of the scheme is proved. We theoretically and numerically show that it converges in the \(L_2\)-norm with the optimal order \(\mathcal{O}(\tau^2+h^2)\) with the time step \(\tau\) and mesh size \(h\). Moreover, the same technique is utilized to solve the nonlinear case of this problem. For the purpose of effectively solving these discretized systems, which have Toeplitz structure, two fast Krylov subspace solvers with suitable circulant preconditioners are designed. In each iterative step, these methods reduce the storage requirements of these discretized systems from \(\mathcal{O}(N^2)\) to \(\mathcal{O}(N)\) and the computational complexity from \(\mathcal{O}(N^3)\) to \(\mathcal{O}(N\log N)\) where \(N\) is the number of grid nodes. Numerical experiments are carried out to demonstrate that these methods are more practical than the traditional direct solvers of the implicit difference methods, in aspects of memory requirement and calculation time.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics
70-XX Mechanics of particles and systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191, 12-20 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[2] Zhao, Z.; Jin, X.-Q.; Lin, M.-M, Preconditioned iterative methods for space-time fractional advection-diffusion equations, J. Comput. Phys., 319, 266-279 (2016) · Zbl 1349.65361 · doi:10.1016/j.jcp.2016.05.021
[3] Podlubny, I., Fractional Differential Equations (1999), San Diego, CA: Academic Press, Inc, San Diego, CA · Zbl 0918.34010
[4] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Yverdonn, Switzerland: Gordon and Breach Science Publishers, Yverdonn, Switzerland · Zbl 0818.26003
[5] Benson, D. A.; Schumer, R.; Meerschaert, M. M.; Wheatcraft, S. W., Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media., 42, 1-2, 211-240 (2001) · doi:10.1023/A:1006733002131
[6] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 6, 1413-1423 (2000) · doi:10.1029/2000WR900032
[7] Metzler, R.; Klafter, J., The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[8] Povstenko, Y., Generalized boundary conditions for the time-fractional advection diffusion equation, Entropy, 17, 6, 4028-4039 (2015) · Zbl 1338.35476 · doi:10.3390/e17064028
[9] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., Application of a fractional advection-dispersion equation, Water Resour. Res., 36, 6, 1403-1412 (2000) · doi:10.1029/2000WR900031
[10] Abbasbandy, S.; Kazem, S.; Alhuthali, M. S.; Alsulami, H. H., Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation, Appl. Math. Comput., 266, 31-40 (2015) · Zbl 1410.65388 · doi:10.1016/j.amc.2015.05.003
[11] Ervin, V. J.; Heuer, N.; Roop, J. P., Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45, 2, 572-591 (2007) · Zbl 1141.65089 · doi:10.1137/050642757
[12] Ford, N. J.; Simpson, A. C., The numerical solution of fractional differential equations: speed versus accuracy, Numer. Algor., 26, 333-346 (2001) · Zbl 0976.65062 · doi:10.1023/A:1016601312158
[13] Liu, F.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 1, 209-219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[14] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[15] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided spacefractional partial differential equations, Appl. Numer. Math., 56, 1, 80-90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[16] Meerschaert, M. M.; Scheffler, H. P.; Tadjeran, C., Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 1, 249-261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[17] Wang, H.; Wang, K.; Sircar, T., A direct \(####\) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 8095-8104 (2010) · Zbl 1198.65176 · doi:10.1016/j.jcp.2010.07.011
[18] Luo, W.-H.; Huang, T.-Z.; Wu, G.-C.; Gu, X.-M, Quadratic spline collocation method for the time fractional subdiffusion equation, Appl. Math. Comput., 276, 252-265 (2016) · Zbl 1410.65397 · doi:10.1016/j.amc.2015.12.020
[19] Gu, X.-M.; Huang, T.-Z.; Zhao, X.-L.; Li, H.-B.; Li, L., Strang-type preconditioners for solving fractional diffusion equations by boundary value methods, J. Comput. Appl. Math., 277, 73-86 (2015) · Zbl 1302.65212 · doi:10.1016/j.cam.2014.08.011
[20] Wei, L.; Zhang, X.; He, Y., Analysis of a local discontinuous Galerkin method for time fractional advection-diffusion equations, Int. J. Numer. Methods Heat Fluid Flow, 23, 4, 634-648 (2013) · Zbl 1357.65181 · doi:10.1108/09615531311323782
[21] Zhuang, P.; Gu, Y.-T.; Liu, F.; Turner, I.; Yarlagadda, P. K. D. V., Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method, Int. J. Numer. Methods Eng., 88, 13, 1346-1362 (2011) · Zbl 1242.76262 · doi:10.1002/nme.3223
[22] Fu, Z.-J.; Chen, W.; Yang, H.-T, Boundary particle method for Laplace transformed time fractional diffusion equations, J. Comput. Phys., 235, 52-66 (2013) · Zbl 1291.76256 · doi:10.1016/j.jcp.2012.10.018
[23] Zhai, S.; Feng, X.; He, Y., An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation, J. Comput. Phys., 269, 138-155 (2014) · Zbl 1349.65356 · doi:10.1016/j.jcp.2014.03.020
[24] Wang, Y.-M, A compact finite difference method for solving a class of time fractional convection-subdiffusion equations, Bit Numer. Math., 55, 4, 1187-1217 (2015) · Zbl 1348.65120 · doi:10.1007/s10543-014-0532-y
[25] Liu, F.; Zhuang, P.; Burrage, K., Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64, 10, 2990-3007 (2012) · Zbl 1268.65124 · doi:10.1016/j.camwa.2012.01.020
[26] Sousa, E.; Li, C., A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl. Num. Math., 90, 22-37 (2015) · Zbl 1326.65111 · doi:10.1016/j.apnum.2014.11.007
[27] Qu, W.; Lei, S.-L.; Vong, S.-W, Circulant and skew-circulant splitting iteration for fractional advection-diffusion equations, Int. J. Comput. Math., 91, 10, 2232-2242 (2014) · Zbl 1303.26010 · doi:10.1080/00207160.2013.871001
[28] Zhang, Y., A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215, 524-529 (2009) · Zbl 1177.65198 · doi:10.1016/j.amc.2009.05.018
[29] Zhang, Y., Finite difference approximations for space-time fractional partial differential equation, J. Numer. Math., 17, 319-326 (2009) · Zbl 1186.65119
[30] Shen, S.; Liu, F.; Anh, V., Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numer. Algor., 56, 383-403 (2011) · Zbl 1214.65046 · doi:10.1007/s11075-010-9393-x
[31] Gu, X.-M.; Huang, T.-Z.; Ji, C.-C.; Carpentieri, B.; Alikhanov, A. A., Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation, J. Sci. Comput., 72, 3, 957-985 (2017) · Zbl 1379.65062 · doi:10.1007/s10915-017-0388-9
[32] Wei, J.; Chen, Y.; Li, B.; Yi, M., Numerical solution of space-time fractional convection-diffusion equations with variable coefficients using Haar wavelets, Comput. Model. Eng. Sci., 89, 481-495 (2012) · Zbl 1356.65271
[33] Hejazi, H.; Moroney, T.; Liu, F., A finite volume method for solving the two-sided time-space fractional advection-dispersion equation, Cent. Eur. J. Phys., 11, 1275-1283 (2013)
[34] Parvizi, M.; Eslahchi, M. R.; Dehghan, M., Numerical solution of fractional advection-diffusion equation with a nonlinear source term, Numer. Algor., 68, 3, 601-629 (2015) · Zbl 1319.35290 · doi:10.1007/s11075-014-9863-7
[35] Cui, M., Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients, J. Comput. Phys., 280, 143-163 (2015) · Zbl 1349.65281 · doi:10.1016/j.jcp.2014.09.012
[36] M, N., Iterative Methods for Toeplitz Systems (2004), New York, NY: Oxford University Press, New York, NY · Zbl 1059.65031
[37] Wang, K.; Wang, H., A fast characteristic finite difference method for fractional advection-diffusion equations, Adv. Water Resour., 34, 7, 810-816 (2011) · doi:10.1016/j.advwatres.2010.11.003
[38] Gu, X.-M.; Huang, T.-Z.; Li, H.-B.; Li, L.; Luo, W.-H, On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations, Appl. Math. Lett., 42, 53-58 (2015) · Zbl 1326.65120 · doi:10.1016/j.aml.2014.11.005
[39] Zhao, Y.-L.; Zhu, P.-Y.; Luo, W.-H, A fast second-order implicit scheme for non-linear time-space fractional diffusion equation with time delay and drift term, Appl. Math. Comp., 336, 231-248 (2018) · Zbl 1427.65204 · doi:10.1016/j.amc.2018.05.004
[40] Li, M.; Gu, X.-M.; Huang, C.; Fei, M.; Zhang, G., A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comp. Phys., 358, 256-282 (2018) · Zbl 1382.65320 · doi:10.1016/j.jcp.2017.12.044
[41] Van Der Vorst, H. A., Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsysmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[42] Gu, X.-M.; Huang, T.-Z.; Carpentieri, B.; Li, L.; Wen, C., A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems, Comput. Math. Appl., 70, 12, 3019-3031 (2015) · Zbl 1443.65042 · doi:10.1016/j.camwa.2015.10.012
[43] Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280, 424-438 (2015) · Zbl 1349.65261 · doi:10.1016/j.jcp.2014.09.031
[44] Tian, W.-Y.; Zhou, H.; Deng, W.-H, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp. Comput., 84, 294, 1703-1727 (2015) · Zbl 1318.65058 · doi:10.1090/S0025-5718-2015-02917-2
[45] Feng, L.-B.; Zhuang, P.; Liu, F.; Turner, I.; Li, J., High-order numerical methods for the Riesz space fractional advection-dispersion equations, Comput. Math. Appl. (2016) · doi:10.1016/j.camwa.2016.01.015
[46] Mohebbi, A.; Abbaszadeh, M.; Dehghan, M., A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys., 240, 36-48 (2013) · Zbl 1287.65064 · doi:10.1016/j.jcp.2012.11.052
[47] Lei, S.-L.; Sun, H.-W, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242, 715-725 (2013) · Zbl 1297.65095 · doi:10.1016/j.jcp.2013.02.025
[48] Chan, R.; Jin, X., An Introduction to Iterative Toeplitz Solvers (2007), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 1146.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.