×

Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows. (English) Zbl 1460.76796

Summary: We present a direct numerical simulation (DNS) study of pseudo-turbulence in buoyancy-driven bubbly flows for a range of Reynolds \((150\leqslant Re\leqslant 546)\) and Atwood \((0.04\leqslant At\leqslant 0.9)\) numbers. We study the probability distribution function of the horizontal and vertical liquid velocity fluctuations and find them to be in quantitative agreement with the experiments. The energy spectrum shows a \(k^{-3}\) scaling at high \(Re\) and becomes steeper on reducing \(Re\). To investigate spectral transfers in the flow, we derive the scale-by-scale energy budget equation. Our analysis shows that, for scales smaller than the bubble diameter, the net transfer because of the surface tension and the kinetic energy flux balances viscous dissipation to give \(k^{-3}\) scaling of the energy spectrum for both low and high \(At\).

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M22 Spectral methods applied to problems in fluid mechanics

Software:

PARIS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alméras, E., Mathai, V., Sun, C. & Lohse, D.2019Mixing induced by a bubble swarm rising through incident turbulence. Intl J. Multiphase Flow114, 316-322.
[2] Alméras, E., Mathai, V., Lohse, D. & Sun, C.2017Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech.825, 1091-1112.
[3] Aniszewski, W.et al. 2019 PArallel, Robust, Interface Simulator (PARIS), hal-02112617. Available at: .
[4] Bhaga, D. & Weber, M. E.1981Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech.105, 61-85.
[5] Biferale, L., Perlekar, P., Sbragaglia, M. & Toschi, F.2012Convection in multiphase fluid flows using lattice Boltzmann methods. Phys. Rev. Lett.108, 104502. · Zbl 1373.76227
[6] Bunner, B. & Tryggvason, G.2002aDynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech.466, 17-52. · Zbl 1042.76058
[7] Bunner, B. & Tryggvason, G.2002bDynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech.466, 53-84. · Zbl 1152.76484
[8] Canuto, C., Hussaini, M. Y., Quarteroni, A. M. & Zang, T. A.2012Spectral Methods in Fluid Dynamics. Springer-Verlag. · Zbl 0658.76001
[9] Ceccio, S. L.2010Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech.42, 183-202.
[10] Clift, R., Grace, J. R. & Weber, M. E.1978Bubbles, Drops and Particles. Academic Press.
[11] Deckwer, W.-D.1992Bubbles Column Reactors. Wiley.
[12] Elghobashi, S.2019Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech.51, 217-244. · Zbl 1412.76046
[13] Frisch, U.1997Turbulence, A Legacy of A. N. Kolmogorov. Cambridge University Press.
[14] Gonnermann, H. M. & Manga, M.2007The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech.39, 321-356. · Zbl 1296.76155
[15] Joseph, D. D.1976Stability of Fluid Motions II. Springer. · Zbl 0345.76023
[16] Lance, M. & Bataille, J.1991Turbulence in the liquid phase of a uniform bubbly airwater flow. J. Fluid Mech.222, 95-118.
[17] Larue De Tournemine, A.2001 Etude expérimentale de l’effet du taux de vide en écoulement diphasique á bulles. PhD thesis, Institut National Polytechnique de Toulouse.
[18] Mathai, V., Huisman, S. G., Sun, C., Lohse, D. & Bourgoin, M.2018Dispersion of air bubbles in isotropic turbulence. Phys. Rev. Lett.121 (5), 054501.
[19] Mathai, V., Lohse, D. & Sun, C.2020Bubble and buoyant particle laden turbulent flows. Annu. Rev. Condens. Matter Phys.11, (in press).
[20] Mendez-Diaz, S., Serrano-Garcia, J. C., Zenit, R. & Hernández-Cordero, J. A.2013Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids25 (4), 043303.
[21] Mercado, J. M., Gómez, D. G., Gils, D. V., Sun, C. & Lohse, D.2010On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech.650, 287-306. · Zbl 1189.76036
[22] Mudde, R. F.2005Gravity-driven bubbly flows. Annu. Rev. Fluid Mech.37, 393-423. · Zbl 1117.76064
[23] Pandit, R.et al.2017An overview of the statistical properties of two-dimensional turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids. Phys. Fluids29, 111112.
[24] Pandit, R., Perlekar, P. & Ray, S. S.2009Statistical properties of turbulence: an overview. Pramana73 (1), 157-191.
[25] Perlekar, P.2019Kinetic energy spectra and flux in turbulent phase-separating symmetric binary-fluid mixtures. J. Fluid Mech.873, 459-474. · Zbl 1421.76135
[26] Perlekar, P., Mitra, D. & Pandit, R.2006Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence. Phys. Rev. Lett.97, 264501.
[27] Perlekar, P., Mitra, D. & Pandit, R.2010Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E82, 066313.
[28] Pivello, M. R., Villar, M. M., Serfaty, R., Roma, A. M. & Silveira-Neto, A.2014A fully adaptive front tracking method for the simulation of two phase flows. Intl J. Multiphase Flow58, 72-82.
[29] Pope, S.2012Turbulent Flows. Cambridge University Press.
[30] Prakash, V.N., Mercado, J.M., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D. & Sun, C.2016Energy spectra in turbulent bubbly flows. J. Fluid Mech.791, 174-190. · Zbl 1382.76263
[31] Riboux, G., Risso, F. & Legendre, D.2010Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech.643, 509-539. · Zbl 1189.76038
[32] Risso, F.2011Theoretical model for k^-3 spectra in dispersed multiphase flows. Phys. Fluids23 (1), 011701.
[33] Risso, F.2016Physical interpretation of probability density functions of bubble-induced agitation. J. Fluid Mech.809, 240-263. · Zbl 1383.76508
[34] Risso, F.2018Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech.50, 25-48. · Zbl 1384.76053
[35] Roghair, I., Mercado, J. M., Annaland, M. V. S., Kuipers, H., Sun, C. & Lohse, D.2011Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations versus experiments. Intl J. Multiphase Flow37 (9), 1093-1098.
[36] Rycroft, C. H.2009Voro++: a three-dimensional Voronoi cell library in C++. Chaos: An Interdisciplinary Journal of Nonlinear Science19 (4), 041111.
[37] Shukla, I., Kofman, N., Balestra, G., Zhu, L. & Gallaire, F.2019Film thickness distribution in gravity-driven pancake-shaped droplets rising in a Hele-Shaw cell. J. Fluid Mech.874, 1021-1040. · Zbl 1419.76147
[38] Tagawa, Y., Roghair, I., Prakash, V. N., van Sint Annaland, M., Kuipers, H., Sun, C. & Lohse, D.2013The clustering morphology of freely rising deformable bubbles. J. Fluid Mech.721, R2. · Zbl 1287.76221
[39] Tchoufag, J., Magnaudet, J. & Fabre, D.2014Linear instability of the path of a freely rising spheroidal bubble. J. Fluid Mech.751, R4.
[40] Tripathi, M. K., Sahu, K. C. & Govindarajan, R.2015Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun.6, 6268.
[41] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-J.2001A front-tracking method for the computations of multiphase flow. J. Comput. Phys.169 (2), 708-759. · Zbl 1047.76574
[42] Valente, P. C., da Silva, C. B. & Pinho, F. T.2014The effect of viscoelasticity on the turbulent kinetic energy cascade. J. Fluid Mech.760, 39-62.
[43] Welch, P.1967The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust.15 (2), 70-73.
[44] Wu, M. & Gharib, M.2002Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids14 (7), L49-L52. · Zbl 1185.76401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.