zbMATH — the first resource for mathematics

Conformal embeddings in affine vertex superalgebras. (English) Zbl 07146125
Summary: This paper is a natural continuation of our previous work on conformal embeddings of vertex algebras [6], [7], [8]. Here we consider conformal embeddings in simple affine vertex superalgebra \(V_k(\mathfrak{g})\) where \(\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}\) is a basic classical simple Lie superalgebra. Let \(\mathcal{V}_k(\mathfrak{g}_{\overline{0}})\) be the subalgebra of \(V_k(\mathfrak{g})\) generated by \(\mathfrak{g}_{\overline{0}} \). We first classify all levels \(k\) for which the embedding \(\mathcal{V}_k(\mathfrak{g}_{\overline{0}})\) in \(V_k(\mathfrak{g})\) is conformal. Next we prove that, for a large family of such conformal levels, \(V_k(\mathfrak{g})\) is a completely reducible \(\mathcal{V}_k(\mathfrak{g}_{\overline{0}})\)-module and obtain decomposition rules. Proofs are based on fusion rules arguments and on the representation theory of certain affine vertex algebras. The most interesting case is the decomposition of \(V_{- 2}(o s p(2 n + 8 | 2 n))\) as a finite, non simple current extension of \(V_{- 2}(D_{n + 4}) \otimes V_1(C_n)\). This decomposition uses our previous work [10] on the representation theory of \(V_{- 2}(D_{n + 4})\). We also study conformal embeddings \(g l(n | m) \hookrightarrow s l(n + 1 | m)\) and in most cases we obtain decomposition rules.
17B69 Vertex operators; vertex operator algebras and related structures
17B20 Simple, semisimple, reductive (super)algebras
17B65 Infinite-dimensional Lie (super)algebras
Full Text: DOI arXiv
[1] Adamović, D., Some rational vertex algebras, Glas. Mat., 29, 49, 25-40 (1994) · Zbl 0820.17035
[2] Adamović, D.; Milas, A., Vertex operator algebras associated to modular invariant representations for \(A_1^{(1)}\), Math. Res. Lett., 2, 563-575 (1995) · Zbl 0848.17033
[3] Adamović, D.; Milas, A., On some vertex algebras related to \(V_{- 1}(\mathfrak{sl}(n))\) and their characters
[4] Adamović, D.; Perše, O., Some general results on conformal embeddings of affine vertex operator algebras, Algebr. Represent. Theory, 16, 1, 51-64 (2013) · Zbl 1281.17028
[5] Adamović, D.; Perše, O., Fusion rules and complete reducibility of certain modules for affine lie algebras, J. Algebra Appl., 13, Article 1350062 pp. (2014), (18 pages) · Zbl 1281.17024
[6] Adamović, D.; Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Perše, O., Finite vs infinite decompositions in conformal embeddings, Comm. Math. Phys., 348, 445-473 (2016) · Zbl 1405.17049
[7] Adamović, D.; Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Perše, O., Conformal embeddings of affine vertex algebras in minimal W-algebras, I: structural results, J. Algebra, 500, 117-152 (2018) · Zbl 1420.17028
[8] Adamović, D.; Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Perše, O., Conformal embeddings of affine vertex algebras in minimal W-algebras, II: decompositions, Jpn. J. Math., 12, 2, 261-315 (September 2017)
[9] Adamović, D.; Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Perše, O., On classification of non-equal rank affine conformal embeddings and applications, Selecta Math. (N.S.), 24, 2455-2498 (2018) · Zbl 1447.17018
[10] Adamović, D.; Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Perše, O., An application of collapsing levels to the representation theory of affine vertex algebras, Int. Math. Res. Not. (2018)
[11] Adamović, D.; Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Perše, O., Kostant’s pairs of Lie type and conformal embeddings, (Affine, Vertex and W-Algebras. Affine, Vertex and W-Algebras, Indam Series, vol. 37 (2019), Springer), 1-22, in press
[12] Bakalov, B.; Kac, V. G., Field algebras, Int. Math. Res. Not., 3, 123-159 (2003) · Zbl 1032.17045
[13] Creutzig, T., Lectures on vertex operator superalgebra extensions, available at:
[14] Creutzig, T.; Gaiotto, D., Vertex algebras for S-duality
[15] DeWitt, B. S.; van Nieuwenhuizen, P., Explicit construction of the exceptional superalgebras \(F(4)\) and \(G(3)\), J. Math. Phys., 23, 10, 1953-1963 (1982) · Zbl 0501.17001
[16] Dong, C.; Lepowsky, J., Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics (1993), Birkhäuser: Birkhäuser Boston · Zbl 0803.17009
[17] Feingold, A. J.; Frenkel, I. B., Classical affine algebras, Adv. Math., 56, 117-172 (1985) · Zbl 0601.17012
[18] Frappat, L.; Sciarrino, A.; Sorba, P., Dictionary on Lie Algebras and Superalgebras (2000), Academic Press · Zbl 0965.17001
[19] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Springer GTM, vol. 9 (1972) · Zbl 0254.17004
[20] Kac, V. G., Lie Superalgebras, Adv. Math., 26, 8-96 (1977) · Zbl 0366.17012
[21] Kac, V. G., Representations of Classical Lie Superalgebras, in Differential Geometrical Methods in Mathematical Physics, II, Lecture Notes in Math., vol. 676, 597-626 (1978), Springer: Springer Berlin
[22] Kac, V. G.; Sanielevici, M., Decomposition of representations of exceptional affine algebras with respect to conformal subalgebras, Phys. Rev. D, 37, 8, 2231-2237 (1988)
[23] Kac, V. G.; Wakimoto, M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math., 70, 156-236 (1988) · Zbl 0661.17016
[24] Kac, V. G., Vertex Algebras for Beginners, University Lecture Series, vol. 10 (1998), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0924.17023
[25] Kac, V. G.; Wakimoto, M., Integrable highest weight modules over affine superalgebras and Appell’s function, Comm. Math. Phys., 215, 3, 631-682 (2001) · Zbl 0980.17002
[26] Kac, V. G.; Wakimoto, M., Quantum reduction and representation theory of superconformal algebras, Adv. Math., 185, 400-458 (2004) · Zbl 1049.17025
[27] Kac, V. G.; Möseneder Frajria, P.; Papi, P.; Xu, F., Conformal embeddings and simple current extensions, Int. Math. Res. Not., 14, 5229-5288 (2015) · Zbl 1418.17059
[28] Perše, O., Vertex operator algebras associated to type B affine Lie algebras on admissible half-integer levels, J. Algebra, 307, 215-248 (2007) · Zbl 1136.17023
[29] Weiner, M. D., Bosonic construction of vertex operator para-algebras from symplectic affine Kac-Moody algebras, Mem. Amer. Math. Soc., 135, 644 (1998), viii+106 pp. · Zbl 0915.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.