×

zbMATH — the first resource for mathematics

A 3D spectral multigrid method. (English) Zbl 0714.65090
The author develops a spectral defect correction multigrid scheme for three-dimensional elliptic equations. The basic idea is to use a pseudospectral discretization for the defect and a multigrid method based on a finite difference discretization. The multigrid method uses alternating plane relaxation based on Richardson’s iteration.
Reviewer: S.F.McCormick

MSC:
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
65F10 Iterative numerical methods for linear systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brandt, A.; Fulton, S.R.; Taylor, G.D., J. comput. phys., 58, 96, (1985)
[2] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer-Verlag New York · Zbl 0658.76001
[3] Faddeyew, D.K.; Faddeyewa, W.M., Numerische methoden der linearen algebra, (1979), Oldenbourg Verlag Munich
[4] Gärtel, U., Arbeitspapier der GMD 390, 1st European workshop on hypercube and distributed computers, (4-6 Oct. 1989), Rennes
[5] Heinrichs, W., Kollokationsverfahren und mehrgittermethoden bei elliptischen randwertaufgaben, (1987), Oldenbourg Verlag Munich · Zbl 0623.65122
[6] Heinrichs, W., J. comput. phys., 77, 166, (1988)
[7] Heinrichs, W., J. comput. phys., 78, 424, (1988)
[8] de Rivas, E.Kálnay, J. comput. phys., 10, 202, (1972)
[9] Temperton, C., J. comput. phys., 31, 1, (1979)
[10] Temperton, C., J. comput. phys., 34, 314, (1980)
[11] Thole, C.A.; Trottenberg, U., Advances in multigrid methods, (), 102-111
[12] Zang, T.A.; Wong, Y.S.; Hussaini, M.Y., J. comput. phys., 48, 485, (1982)
[13] Zang, T.A.; Wong, Y.S.; Hussaini, M.Y., J. comput. phys., 54, 489, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.