×

zbMATH — the first resource for mathematics

Models of dispersal in biological systems. (English) Zbl 0713.92018
Summary: In order to provide a general framework within which the dispersal of cells or organisms can be studied, we introduce two stochastic processes that model the major modes of dispersal that are observed in nature. In the first type of movement, which we call the position jump or kangaroo process, the process comprises a sequence of alternating pauses and jumps. The duration of a pause is governed by a waiting time distribution, and the direction and distance traveled during a jump is fixed by the kernel of an integral operator that governs the spatial redistribution. Under certain assumptions concerning the existence of limits as the mean step size goes to zero and the frequency of stepping goes to infinity the process is governed by a diffusion equation, but other partial differential equations may result under different assumptions.
The second major type of movement leads to what we call a velocity jump process. In this case the motion consists of a sequence of “runs” separated by reorientations, during which a new velocity is chosen. We show that under certain assumptions this process leads to a damped wave equation called the telegrapher’s equation. We derive explicit expressions for the mean squared displacement and other experimentally observable quantities. Several generalizations, including the incorporation of a resting time between movements, are also studied. The available data on the motion of cells and other organisms is reviewed, and it is shown how the analysis of such data within the framework provided here can be carried out.

MSC:
92D25 Population dynamics (general)
92C99 Physiological, cellular and medical topics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
60J75 Jump processes (MSC2010)
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abramowitz, M., Stegun, I.: Handbook of mathematical functions. New York: Dover, 1965 · Zbl 0171.38503
[2] Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147-177 (1980) · Zbl 0434.92001
[3] Alt, W., Eisele, T., Schaaf, R.: Chemotaxis of gametes: A diffusion approximation IMA. J. Math. Appl. Med. Biol. 2, 109-129 (1985) · Zbl 0611.92033
[4] Aronson, D. G.: The role of diffusion in mathematical population biology: Skellam revisited. In: Capasso, V., Grosso, E., Paveri-Fontana, S. L. (eds.) Mathematics in biology and medicine (Lect. Notes Biomath., vol. 57, pp. 2-6). Berlin Heidelberg New York Tokyo: Springer 1985
[5] Berg, H.: How bacteria swim. Sci. Am. 233, 36-44 (1975)
[6] Berg, H.: Random walks in biology. Princeton: Princeton University Press 1983
[7] Berg, H. C., Brown, D. A.: Chemotaxis in Escherichia coli analysed by three dimensional tracking. Nature, 239, 500-504 (1972)
[8] Boyarsky, A.: A Markov chain model for human granulocyte movement. J. Math. Biol. 2, 69-78 (1975) · Zbl 0304.92003
[9] Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 2-89 (1943) · Zbl 0061.46403
[10] Dunbar, S., Othmer, H. G.: On a nonlinear hyperbolic equation describing transmission lines, cell movement and branching random walks. In: Othmer, H. G. (ed.) Nonlinear oscillations in biology and chemistry (Lect. Notes Biomath., vol. 66, pp. 274-289). Berlin Heidelberg New York Tokyo: Springer 1986 · Zbl 0592.92003
[11] Dunbar, S.: A branching random evolution and a nonlinear hyperbolic equation. To appear in SIAM J. Appld. Math. (1988) · Zbl 0664.60082
[12] Dunn, G. A.: Characterizing a kinesis response: time averaged measures of cell speed and directional persistence. In: Keller, H. O., Till, G. O. (eds.) Leukocyte locomotion and chemotaxis, pp. 14-33. Basel: Birkhäuser 1983
[13] Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549-560 (1905) · JFM 36.0975.01
[14] Feller, W.: An introduction to probability theory. Wiley: New York 1968 · Zbl 0155.23101
[15] Fürth, R.: Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Z. Physik 2, 244-256 (1920)
[16] Gail, M. H., Boone, C. W.: The locomotion of mouse fibroblasts in tissue culture. Biophys. J. 10, 980-993 (1970)
[17] Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Applied Math. VI, 129-156 (1951) · Zbl 0045.08102
[18] Greenberg, E., Canale-Parola, E.: Chemotaxis in Spirocheta aurantia. J. Bacteriol. 130, 485-494 (1977)
[19] Gruler, H., Bültman, B. D.: Analysis of cell movement. Blood Cells 10, 61-77 (1984)
[20] Hall, R. L.: Amoeboid movement as a correlated walk. J. Math. Biol. 4, 327-335 (1977) · Zbl 0375.92009
[21] Hall, R. L., Peterson, S. C.: Trajectories of human granulocytes. Biophys. J. 25, 365-372 (1979)
[22] Henderson, R., Renshaw, E.: Spatial stochastic models and computer simulation applied to the study of tree root systems. In: Barritt, M., Wishart, D. (eds.) Proceedings in Computational Statistics 4th Symposium, Edinburgh 1980, pp. 389-395. Wien: Physica 1980
[23] Jones, R.: Movement patterns and egg distribution in cabbage butterflies. J. An. Ecol. 46, 195-212 (1977)
[24] Johnson, N. L., Kotz, S.: Distributions in statistics ? continuous univariate distributions, vol. 2. New York: Wiley 1970 · Zbl 0213.21101
[25] Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mountain J. Math. 3, 497-509 (1974) · Zbl 0314.60052
[26] Kareiva, P.: Local movement in herbivorous insects: applying a passive diffusion model to markrecapture field experiments. Oecologica 57, 322-327 (1983)
[27] Kareiva, P., Shigesada, N.: Analyzing insect movement as a correlated random walk. Oecologica 56, 234-238 (1983)
[28] Karlin, S., Taylor, H.: A first course in stochastic processes. New York: Academic Press 1975 · Zbl 0315.60016
[29] Keller, H. U., Zimmerman, A.: Orthokinetic and klinokinetic responses of human polymorphonuclear leukocytes. Cell Motility 5, 447-461 (1985)
[30] Koshland, D.: Bacterial chemotaxis as a model behavioral system. New York: Raven Press 1980
[31] Lackie, J. H.: Cell movement and cell behaviour. London: Allen and Unwin 1986
[32] Levin, S. A.; Random walk models of movement and their implications. In: Hallam, T. G., Levin, S. A. (eds.) Mathematical ecology. An introduction (Lect. Notes Biomath., vol. 17, pp. 149-155). Berlin Heidelberg New York Tokyo: Springer 1986
[33] Lovely, P. S., Dahlquist, F. W.: Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50, 477-496 (1975)
[34] McKean, H.: Chapman-Enskog-Hilbert expansions for a class of solutions of the telegraph equation. J. Math. Phys. 75, 1-10 (1967)
[35] Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York: McGraw-Hill 1953 · Zbl 0051.40603
[36] Noble, P. B., Levine, M.: Computer-assisted analyses of cell locomotion and chemotaxis. Boca Raton: CRC Press 1986
[37] Nossal, R.: Stochastic aspects of biological locomotion. J. Stat. Phys. 30, 391-399 (1983)
[38] Nossal, R., Weiss, G. H.: A descriptive theory of cell migration on surfaces. J. Theor. Biol. 47, 103-113 (1974)
[39] Okubo, A.: Diffusion and ecological problems: mathematical models. New York Heidelberg Berlin: Springer 1980 · Zbl 0422.92025
[40] Othmer, H. G.: Interactions of reaction and diffusion in open systems. Ph.D. Thesis, Minneapolis: Univ. of Minnesota (1969)
[41] Othmer, H. G.: On the significance of finite propagation speeds in multicomponent reacting systems. J. Chem. Phys. 64, 460-470 (1976)
[42] Patlak, C. S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311-338 (1953) · Zbl 1296.82044
[43] Resibois, P., DeLeener, M.: Classical kinetic theory of fluids. New York: Wiley 1977
[44] Segel, L. A.: Mathematical models for cellular behavior. In: Levin, S. A. (ed.) Studies in mathematical biology, vol. 15, pp. 156-190. Washington: MAA 1978
[45] Shigesada, N.: Spatial distribution of dispersing animals. J. Math. Biol. 9, 85-96 (1980) · Zbl 0427.92015
[46] Siniff, D. P., Jessen, C. R.: A simulation model of animal movement patterns. Adv. Ecol. Res. 6 185-219 (1969)
[47] Skellam, J. G.: The formulation and interpretation of diffusionary processes in population biology. In: Bartlett, M. S., Hiorns, R. W. (eds.) The mathematical theory of the dynamics of biological populations. New York: Academic Press 1973
[48] Smith, J. N. M.: The food searching behaviour of two European thrushes. I.: Behavior 48, 276-302 (1974); II.: Behavior 49, 1-61 (1974)
[49] Tranquillo, R., Lauffenburger, D.: Stochastic models of leukocyte chemosensory movement. J. Math. Biol. 25, 229-262 (1987) · Zbl 0628.92017
[50] Widder, D.: The Laplace transform. Princeton: Princeton University Press 1946 · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.