zbMATH — the first resource for mathematics

Theory and predictions for finite-amplitude waves in two-dimensional plane Poiseuille flow. (English) Zbl 0713.76039
Summary: It has been found by J. D. Pugh and P. G. Saffman [J. Fluid Mech. 194, 295-307 (1988; Zbl 0645.76048)] that in a two-dimensional channel, the stability of finite-amplitude steady waves to modulated waves can depend on the boundary conditions imposed on the flow. In particular, near the limit point in Reynolds number, stability can depend on whether the flux or the mean pressure gradient is prescribed for the flow. Here a continuous range of intermediate boundary conditions is defined and studied using bifurcation theory. Based only on previous numerical solutions to the Navier-Stokes equations at constant mean flux and constant mean pressure gradient, it is shown that the finite- amplitude steady waves must have a double-zero eigenvalue at some intermediate boundary condition. From this a unifying picture emerges for the dynamics near the limit point in Reynolds number and specific predictions are made for finite-amplitude solutions to the Navier-Stokes equations. These predictions include the existence of a homoclinic orbit and a degenerate Hopf bifurcation.

76E05 Parallel shear flows in hydrodynamic stability
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
Full Text: DOI
[1] DOI: 10.1017/S0022112083000518 · Zbl 0556.76039
[2] DOI: 10.1146/annurev.fl.20.010188.002043
[3] DOI: 10.1017/S002211208800299X · Zbl 0645.76048
[4] DOI: 10.1017/S0022112074002424
[5] DOI: 10.1103/PhysRevLett.46.992
[6] DOI: 10.1103/PhysRevLett.46.992
[7] DOI: 10.1063/1.866450
[8] DOI: 10.1016/0167-2789(89)90136-X
[9] DOI: 10.1007/BF00280410 · Zbl 0654.34025
[10] DOI: 10.1007/BF00280410 · Zbl 0654.34025
[11] DOI: 10.1007/BF00280410 · Zbl 0654.34025
[12] DOI: 10.1111/j.1749-6632.1983.tb19411.x
[13] DOI: 10.1017/S0022112084002081 · Zbl 0578.76031
[14] DOI: 10.1017/S0022112085003482 · Zbl 0594.76028
[15] DOI: 10.1007/BF00247751 · Zbl 0259.58009
[16] DOI: 10.1007/BF02416564 · Zbl 0495.76031
[17] DOI: 10.1007/BF02684366 · Zbl 0279.58009
[18] DOI: 10.1070/RM1972v027n05ABEH001385 · Zbl 0264.58005
[19] DOI: 10.1007/BF01075453 · Zbl 0447.58009
[20] DOI: 10.1016/0375-9601(86)90464-0
[21] DOI: 10.1090/S0002-9904-1967-11798-1 · Zbl 0202.55202
[22] DOI: 10.1063/1.857473
[23] DOI: 10.1063/1.857473
[24] DOI: 10.1017/S0022112084001762 · Zbl 0561.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.