×

A perfect in phase FD algorithm for problems in quantum chemistry. (English) Zbl 1426.81058

Summary: Our research pays attention to the deployment of newly algorithm which is useful on quantum chemical problems.

MSC:

81V55 Molecular physics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
47N60 Applications of operator theory in chemistry and life sciences
65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

EXPFIT4; NEW9p; numerov; LaTeX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880-3889 (2012) · Zbl 1246.65105 · doi:10.1016/j.cam.2012.03.016
[2] M.M. Chawla, S.R. Sharma, Families of 5th order Nyström methods for \[\text{ Y }^{\prime \prime }=\text{ F }(\text{ X }, \text{ Y })Y″=F\](X,Y) and intervals of periodicity. Computing 26(3), 247-256 (1981) · Zbl 0437.34035 · doi:10.1007/BF02243482
[3] J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1-10 (1990) · Zbl 0726.65091 · doi:10.1016/0377-0427(90)90001-G
[4] J.D. Lambert, Numerical Methods for Ordinary Differential Systems, the Initial Value Problem (Wiley, London, 1991), pp. 104-107 · Zbl 0745.65049
[5] E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154-175 (1969) · Zbl 0219.65062 · doi:10.1007/BF02163234
[6] M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for \[\text{ Y }^{\prime \prime }=\text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). BIT 21(4), 455-464 (1981) · Zbl 0469.65048 · doi:10.1007/BF01932842
[7] M.M. Chawla, Unconditionally stable Noumerov-type methods for 2nd order differential-equations. BIT 23(4), 541-542 (1983) · Zbl 0523.65055 · doi:10.1007/BF01933627
[8] http://www.burtleburtle.net/bob/math/multistep.html
[9] M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277-281 (1984) · Zbl 0565.65041 · doi:10.1016/0377-0427(84)90002-5
[10] M.M. Chawla, Numerov made explicit has better stability. BIT 24(1), 117-118 (1984) · Zbl 0568.65042 · doi:10.1007/BF01934522
[11] M.M. Chawla, P.S. Rao, High-accuracy P-stable methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })Y″=F\](T,Y). IMA J. Numer. Anal. 5(2), 215-220 (1985) and M.M Chawla, Correction. IMA J. Numer. Anal. 6(2), 252-252 (1986) · Zbl 0573.65059
[12] T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Numer. Math. 19, 65-75 (1972) · Zbl 0221.65123 · doi:10.1007/BF01395931
[13] T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189-205 (1997) · Zbl 0877.65054 · doi:10.1016/S0377-0427(96)00156-2
[14] R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225-238 (1984) · Zbl 0569.65052 · doi:10.1007/BF01937488
[15] J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189-202 (1976) · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[16] M.M. Chawla, A new class of explicit 2-step 4th order methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })Y″=F\](T,Y) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467-470 (1986) · Zbl 0583.65049 · doi:10.1016/0377-0427(86)90082-8
[17] M.M. Chawla, B. Neta, Families of 2-step 4th-order P-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213-223 (1986) · Zbl 0599.65044 · doi:10.1016/0377-0427(86)90028-2
[18] M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems. 2. Explicit method. J. Comput. Appl. Math. 15(3), 329-337 (1986) · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4
[19] M.M. Chawla, P.S. Rao, B. Neta, 2-Step 4th-order P-stable methods with phase-lag of order 6 for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })Y″=F\](T,Y). J. Comput. Appl. Math. 16(2), 233-236 (1986) · Zbl 0596.65047 · doi:10.1016/0377-0427(86)90094-4
[20] J. Fang, C. Liu, C.-W. Hsu, T.E. Simos, C. Tsitouras, Explicit hybrid six – step, sixth order, fully symmetric methods for solving \[\text{ y }^{\prime \prime } = \text{ f }(\text{ x }, \text{ y })\] y″=f(x,y). Math. Methods Appl. Sci. 42(9), 3305-3314 (2019) · Zbl 1512.65133 · doi:10.1002/mma.5585
[21] M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ T },\text{ Y })Y″=F\](T,Y). J. Comput. Appl. Math. 17(3), 365-368 (1987) · Zbl 0614.65084 · doi:10.1016/0377-0427(87)90113-0
[22] M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput. Math. 69(1-2), 85-100 (1998) · Zbl 0939.65098 · doi:10.1080/00207169808804711
[23] M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order “almost” P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115-118 (1998) · Zbl 0939.65099 · doi:10.1016/S0377-0427(97)00232-X
[24] M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Modell. 29(2), 63-72 (1999) · Zbl 0992.65080 · doi:10.1016/S0895-7177(99)00019-9
[25] J.P. Coleman, Numerical-methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145-165 (1989) · Zbl 0675.65072 · doi:10.1093/imanum/9.2.145
[26] J.P. Coleman, A.S. Booth, Analysis of a family of Chebyshev methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). J. Comput. Appl. Math. 44(1), 95-114 (1992) · Zbl 0773.65048 · doi:10.1016/0377-0427(92)90054-2
[27] C. Tsitouras, T.E. Simos, On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15(2), (2018). https://doi.org/10.1007/s00009-018-1089-9 · Zbl 1446.65046
[28] S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467-2474 (2009) · Zbl 1169.65324 · doi:10.1016/j.apnum.2009.05.004
[29] T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331-1352 (2010) · Zbl 1192.65111 · doi:10.1007/s10440-009-9513-6
[30] T.E. Simos, New stable closed Newton-Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. (2012). https://doi.org/10.1155/2012/182536 · Zbl 1242.65026
[31] T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. (2012). https://doi.org/10.1155/2012/420387 · Zbl 1247.65096
[32] J.P. Coleman, L.G. Ixaru, P-stability and exponential-fitting methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). IMA J. Numer. Anal. 16(2), 179-199 (1996) · Zbl 0847.65052 · doi:10.1093/imanum/16.2.179
[33] J.P. Coleman, S.C. Duxbury, Mixed collocation methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). J. Comput. Appl. Math. 126(1-2), 47-75 (2000) · Zbl 0971.65073 · doi:10.1016/S0377-0427(99)00340-4
[34] L.G. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1-2), 11-20 (1987) · Zbl 0664.65092 · doi:10.1016/0010-4655(87)90013-0
[35] L.G. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270-274 (1987) · Zbl 0621.65099 · doi:10.1016/0021-9991(87)90081-7
[36] L.G. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306-324 (1987) · Zbl 0633.65131 · doi:10.1016/0021-9991(87)90139-2
[37] L.G. Ixaru, H. De Meyer, G. Vanden Berghe, M. Van Daele, Expfit4—a fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1-2), 71-80 (1997) · Zbl 0927.65099 · doi:10.1016/S0010-4655(96)00146-4
[38] L.G. Ixaru, G. Vanden Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1-2), 56-70 (1997) · Zbl 0927.65100 · doi:10.1016/S0010-4655(96)00147-6
[39] L.G. Ixaru, M. Rizea, Four step methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). J. Comput. Appl. Math. 79(1), 87-99 (1997) · Zbl 0872.65070 · doi:10.1016/S0377-0427(96)00165-3
[40] M. Van Daele, G. Vanden Berghe, H. De Meyer, L.G. Ixaru, Exponential-fitted four-step methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). Int. J. Comput. Math. 66(3-4), 299-309 (1998) · Zbl 0894.65032 · doi:10.1080/00207169808804642
[41] L.G. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). J. Comput. Appl. Math. 106(1), 87-98 (1999) · Zbl 0934.65079 · doi:10.1016/S0377-0427(99)00055-2
[42] L.G. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39-53 (2001) · Zbl 1064.65021 · doi:10.1016/S0097-8485(00)00087-5
[43] D.F. Papadopoulos, T.E. Simos, A modified Runge-Kutta-Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433-437 (2013) · doi:10.12785/amis/070202
[44] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge-Kutta-Nyström methods. Appl. Math. Inf. Sci. 7(1), 81-85 (2013) · doi:10.12785/amis/070108
[45] G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73-80 (2013) · doi:10.12785/amis/070107
[46] D.F. Papadopoulos, T.E. Simos, The use of phase lag and amplification error derivatives for the construction of a modified Runge-Kutta-Nyström method. Abstr. Appl. Anal., Article Number: 910624 Published (2013) · Zbl 1275.65044
[47] I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370-5382 (2012) · Zbl 1244.65107
[48] I. Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756-3774 (2011) · Zbl 1236.65083 · doi:10.1016/j.camwa.2011.09.025
[49] C. Tsitouras, I.T. Famelis, T.E. Simos, On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4), 2101-2111 (2011) · Zbl 1231.65118 · doi:10.1016/j.camwa.2011.06.058
[50] C. Tsitouras, I.T. Famelis, T.E. Simos, Phase-fitted Runge-Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226-231 (2017) · Zbl 1366.65071 · doi:10.1016/j.cam.2017.02.030
[51] M.A. Medvedev, T.E. Simos, C. Tsitouras, Trigonometric-fitted hybrid four-step methods of sixth order for solving \[Y^{\prime \prime }(X)=F(X, Y)Y\]″(X)=F(X,Y). Math. Methods Appl. Sci. 42(2), 710-716 (2019) · Zbl 1410.65254 · doi:10.1002/mma.5371
[52] M.A. Medvedev, T.E. Simos, C. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving \[\text{ x }^{\prime \prime }(\text{ t }) = \text{ f } (\text{ t }, \text{ x })\] x″(t)=f(t,x). Math. Methods Appl. Sci. 42(6), 2025-2032 (2019) · Zbl 1416.65195 · doi:10.1002/mma.5495
[53] Z. Kalogiratou, Th. Monovasilis, T.E. Simos, New fifth order two-derivative Runge-Kutta methods with constant and frequency dependent coefficients. Math. Methods Appl. Sci. 42(6), 1955-1966 (2019) · Zbl 1416.65194
[54] T.E. Simos, C.H. Tsitouras, High phase-lag order, four-step methods for solving \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). Appl. Comput. Math. 17(3), 307-316 (2018) · Zbl 1432.65094
[55] T.E. Simos, C. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276-6284 (2017) · Zbl 1387.65066 · doi:10.1002/mma.4454
[56] T.E. Simos, C. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867-7878 (2017) · Zbl 1387.65067 · doi:10.1002/mma.4570
[57] D.B. Berg, T.E. Simos, C. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845-1854 (2018) · Zbl 1387.65061 · doi:10.1002/mma.4711
[58] T.E. Simos, C. Tsitouras, Fitted modifications of classical Runge-Kutta pairs of orders 5(4). Math. Methods Appl. Sci. 41(12), 4549-4559 (2018) · Zbl 1405.65087 · doi:10.1002/mma.4913
[59] Ch. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives. Mediterr. J. Math. 15(4) Article Number: 168. https://doi.org/10.1007/s00009-018-1216-7 (2018) · Zbl 1402.65063
[60] M.A. Medvedev, T.E. Simos, C. Tsitouras, Fitted modifications of Runge-Kutta pairs of orders 6(5). Math. Methods Appl. Sci. 41(16), 6184-6194 (2018) · Zbl 1402.65057 · doi:10.1002/mma.5128
[61] M.A. Medvedev, T.E. Simos, C. Tsitouras, Explicit, two stage, sixth order, hybrid four-step methods for solving \[y^{\prime \prime }(x)=f(x, y)\] y″(x)=f(x,y). Math. Methods Appl. Sci. 41(16), 6997-7006 (2018) · Zbl 1402.65058 · doi:10.1002/mma.5211
[62] T.E. Simos, C. Tsitouras, I.T. Famelis, Explicit Numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89-113 (2017) · Zbl 1387.65065
[63] T.E. Simos, C. Tsitouras, High phase-lag order, four-step methods for solving \[y^{\prime \prime }=f(x, y)\] y″=f(x,y). Appl. Comput. Math. 17(3), 307-316 (2018) · Zbl 1432.65094
[64] A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge-Kutta-Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381-3390 (2011) · Zbl 1222.65066 · doi:10.1016/j.camwa.2011.04.046
[65] Z. Kalogiratou, T. Monovasilis, T.E. Simos, New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639-1647 (2010) · Zbl 1202.65092 · doi:10.1016/j.camwa.2010.06.046
[66] T. Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods. Appl. Math. Comput. 209(1), 91-96 (2009) · Zbl 1161.65090
[67] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods. Mediterr. J. Math. 13(4), 2271-2285 (2016) · Zbl 1347.65123 · doi:10.1007/s00009-015-0587-2
[68] T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286-5294 (2017) · Zbl 1383.65074 · doi:10.1002/mma.4386
[69] T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296-315 (2015) · Zbl 1332.65102
[70] Z. Kalogiratou, T. Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146-155 (2016) · Zbl 1382.65196 · doi:10.1016/j.cam.2016.02.043
[71] H. Ramos, Z. Kalogiratou, T. Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089-1102 (2016) · Zbl 1347.65121 · doi:10.1007/s11075-015-0081-8
[72] T.E. Simos, High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137-151 (2009) · Zbl 1161.65091
[73] L.G. Ixaru, G. Vanden Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116-128 (2003) · Zbl 1196.65110 · doi:10.1016/S0010-4655(02)00676-8
[74] C. Liu, C.-W. Hsu, C. Tsitouras, T.E. Simos, Hybrid Numerov-Type methods with coefficients trained to perform better on classical orbits. Bull. Malays. Math. Sci. Soc. 42(5), 2119-2134 (2019). https://doi.org/10.1007/s40840-019-00775-z · Zbl 1437.65067 · doi:10.1007/s40840-019-00775-z
[75] M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598-1617 (2019) · Zbl 1417.81172 · doi:10.1007/s10910-019-01024-1
[76] M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry. J. Math. Chem. 57(7), 1710-1731 (2019) · Zbl 1436.65086 · doi:10.1007/s10910-019-01033-0
[77] J. Lv, T.E. Simos, A Runge-Kutta type crowded in phase algorithm for quantum chemistry problems. J. Math. Chem. 57(8), 1983-2006 (2019) · Zbl 1422.81180 · doi:10.1007/s10910-019-01051-y
[78] X. Zhang, T.E. Simos, A multiple stage absolute in phase scheme for chemistry problems. J. Math. Chem. (2019). https://doi.org/10.1007/s10910-019-01054-9 · Zbl 1426.81059 · doi:10.1007/s10910-019-01054-9
[79] T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447-458 (2014) · doi:10.12785/amis/080201
[80] G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor – corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703-713 (2014) · doi:10.12785/amis/080229
[81] G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor – corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. J. Comput. Appl. Math. 290, 1-15 (2015) · Zbl 1330.65107 · doi:10.1016/j.cam.2015.04.038
[82] F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191-2213 (2015) · Zbl 1329.65142 · doi:10.1007/s10910-015-0545-z
[83] L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329-337 (1985) · Zbl 0679.65053 · doi:10.1016/0010-4655(85)90100-6
[84] L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)
[85] L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23-27 (1980) · doi:10.1016/0010-4655(80)90062-4
[86] J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235-250 (1987) · Zbl 0624.65059 · doi:10.1093/imanum/7.2.235
[87] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19-26 (1980) · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
[88] G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694-1700 (1990) · doi:10.1086/115629
[89] A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1-5 (1978) · doi:10.1016/0010-4655(78)90047-4
[90] M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II. Explicit Method. J. Comput. Appl. Math. 15, 329-337 (1986) · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4
[91] M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \[y^{\prime \prime }=f(t, y)\] y″=f(t,y). J. Comput. Appl. Math. 17, 363-368 (1987) · Zbl 0614.65084
[92] M. Rizea, Exponential fitting method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55-65 (2010) · Zbl 1198.81100 · doi:10.1007/s10910-009-9626-1
[93] A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224-252 (2010) · Zbl 1198.81092 · doi:10.1007/s10910-010-9664-8
[94] A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113-119 (1985) · Zbl 0578.65086 · doi:10.1016/0010-4655(85)90117-1
[95] A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378-391 (1970) · Zbl 0209.47004 · doi:10.1016/0021-9991(70)90037-9
[96] R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427-442 (1963) · doi:10.1098/rspa.1963.0142
[97] R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795-804 (1960) · doi:10.1063/1.1731265
[98] M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466-478 (2008) · Zbl 1197.81041 · doi:10.1016/j.cpc.2008.04.009
[99] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formula. J. Comput. Appl. Math. 6, 19-26 (1980) · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
[100] K. Mu, T.E. Simos, A Runge-Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239-1256 (2015) · Zbl 1318.65039 · doi:10.1007/s10910-015-0484-8
[101] L.G. Ixaru, M. Rizea, G. Vanden Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83-93 (2001) · Zbl 0991.65061 · doi:10.1016/S0377-0427(00)00599-9
[102] A.D. Raptis, J.R. Cash, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1-2), 95-103 (1987) · Zbl 0664.65090 · doi:10.1016/0010-4655(87)90020-8
[103] C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325-328 (1987) · Zbl 0664.65091 · doi:10.1016/0010-4655(87)90049-X
[104] Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442-465 (2016) · Zbl 1349.65222 · doi:10.1007/s10910-015-0571-x
[105] F. Hui, T.E. Simos, Four stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220-238 (2016) · Zbl 1343.65090
[106] W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177-5194 (2016) · Zbl 1349.65221 · doi:10.1007/s00009-016-0800-y
[107] C. Liu, C.-W. Hsu, T.E. Simos, C. Tsitouras, Phase-fitted, six-stepmethods for solving \[x^{\prime \prime }=f(t, x)\] x″=f(t,x). Math. Methods Appl. Sci. 42(11), 3942-3949 (2019) · Zbl 1431.65111 · doi:10.1002/mma.5623
[108] M. Dong, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. FILOMAT 31(15), 4999-5012 (2017) · Zbl 1499.65273 · doi:10.2298/FIL1715999D
[109] A.D. Raptis, Exponential multisteo methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113-126 (1984) · Zbl 0592.65046
[110] H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295-1312 (2015) · Zbl 1331.65098 · doi:10.1007/s10910-015-0489-3
[111] Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717-733 (2017) · Zbl 1422.65115 · doi:10.1007/s10910-016-0718-4
[112] C. Lin, J.J. Chen, T.E. Simos, C. Tsitouras, Evolutionary derivation of sixth-order P-stable SDIRKN methods for the solution of PDEs with the method of lines. Mediterr. J. Math. 16(3), (2019). https://doi.org/10.1007/s00009-019-1336-8 · Zbl 1415.65150
[113] L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755-1778 (2017) · Zbl 1383.65083 · doi:10.1007/s10910-017-0757-5
[114] K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. 56(1), 170-192 (2018) · Zbl 1384.65050 · doi:10.1007/s10910-017-0787-z
[115] J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299-304 (1984) · doi:10.1016/0010-4655(84)90135-8
[116] A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427-431 (1983) · doi:10.1016/0010-4655(83)90036-X
[117] A.D. Raptis, 2-Step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373-378 (1982) · Zbl 0473.65060
[118] A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1-4 (1981) · doi:10.1016/0010-4655(81)90101-6
[119] A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \[\text{ Y }^{iv}+\text{ F }\cdot \text{ Y }=\text{ G }\] Yiv+F·Y=G. Computing 24(2-3), 241-250 (1980) · Zbl 0416.65048 · doi:10.1007/BF02281728
[120] H. Van De Vyver, A symplectic exponentially fitted modified Runge-Kutta-Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261-269 (2005) · doi:10.1016/j.newast.2004.12.004
[121] H. Van De Vyver, On the generation of P-stable exponentially fitted Runge-Kutta-Nyström methods by exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 188(2), 309-318 (2006) · Zbl 1086.65073 · doi:10.1016/j.cam.2005.04.028
[122] M. Van Daele, G.V. Berghe, P-stable obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115-131 (2007) · Zbl 1123.65070 · doi:10.1007/s11075-007-9084-4
[123] M. Van Daele, G. Vanden Berghe, P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333-350 (2007) · Zbl 1134.65043 · doi:10.1007/s11075-007-9142-y
[124] G.-H. Qiu, C. Liu, T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. 57(1), 119-148 (2019) · Zbl 1406.81027 · doi:10.1007/s10910-018-0940-3
[125] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrical fitting conditions for two derivative Runge-Kutta methods. Numer. Algorithms 79, 787-800 (2018) · Zbl 1416.65207 · doi:10.1007/s11075-017-0461-3
[126] Y. Fang, W. Xinyuan, A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341-351 (2008) · Zbl 1136.65068 · doi:10.1016/j.apnum.2006.12.003
[127] G. Vanden Berghe, M. Van Daele, Exponentially-fitted Obrechkoff methods for second-order differential equations. Appl. Numer. Math. 59(3-4), 815-829 (2009) · Zbl 1166.65352 · doi:10.1016/j.apnum.2008.03.018
[128] D. Hollevoet, M. Van Daele, G. Vanden Berghe, the optimal exponentially-fitted Numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260-269 (2009) · Zbl 1167.65406 · doi:10.1016/j.cam.2008.11.011
[129] J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493-505 (2016) · Zbl 1410.65250
[130] J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge-Kutta methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45-57 (2015) · Zbl 1338.65187
[131] J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-step hybrid methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527-2537 (2014) · Zbl 1360.70038 · doi:10.1016/j.cpc.2014.05.030
[132] J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643-657 (2014) · Zbl 1410.65261
[133] J.M. Franco, I. Gomez, Symplectic explicit methods of Runge-Kutta-Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482-493 (2014) · Zbl 1293.65102 · doi:10.1016/j.cam.2013.10.015
[134] J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nyström methods of explicit type. Comput. Phys. Commun. 184(4), 1310-1321 (2013) · Zbl 1301.65071 · doi:10.1016/j.cpc.2012.12.018
[135] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge-Kutta methods. J. Comput. Appl. Math. 236(15), 3665-3675 (2012) · Zbl 1245.65092 · doi:10.1016/j.cam.2011.07.004
[136] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order. Comput. Phys. Commun. 181(12), 2044-2056 (2010) · Zbl 1219.65148 · doi:10.1016/j.cpc.2010.08.019
[137] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge-Kutta methods with an even number of stages. BIT Numer. Math. 50(1), 3-21 (2010) · Zbl 1187.65076 · doi:10.1007/s10543-010-0250-z
[138] J.M. Franco, I. Gomez, Accuracy and linear stability of RKN methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959-975 (2009) · Zbl 1161.65062 · doi:10.1016/j.apnum.2008.04.002
[139] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387-398 (2009) · Zbl 1153.65119 · doi:10.1016/j.cam.2008.01.026
[140] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 218(2), 421-434 (2008) · Zbl 1154.65341 · doi:10.1016/j.cam.2007.05.016
[141] M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge-Kutta methods of Gauss type. Comput. Phys. Commun. 178(10), 732-744 (2008) · Zbl 1196.70007 · doi:10.1016/j.cpc.2008.01.046
[142] J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479-492 (2007) · Zbl 1196.65114 · doi:10.1016/j.cpc.2007.05.003
[143] J.M. Franco, New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56(8), 1040-1053 (2006) · Zbl 1096.65068 · doi:10.1016/j.apnum.2005.09.005
[144] J.M. Franco, Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770-787 (2002) · Zbl 1019.65050 · doi:10.1016/S0010-4655(02)00460-5
[145] J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389-396 (2005) · Zbl 1065.65101 · doi:10.1016/j.cam.2004.05.017
[146] X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545-1549 (2009) · doi:10.1016/j.cpc.2009.04.005
[147] A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods. Math. Comput. Modell. 42, 873-876 (2005) · Zbl 1086.65120 · doi:10.1016/j.mcm.2005.09.015
[148] L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods). JNAIAM J. Numer. Anal. Ind. Appl. Math. 5, 17-37 (2010) · Zbl 1432.65182
[149] F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. JNAIAM J. Numer. Anal. Ind. Appl. Math. 4, 87-101 (2009) · Zbl 1191.65169
[150] A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808-1832 (2017) · Zbl 1421.65017 · doi:10.1007/s10910-017-0762-8
[151] A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330-1356 (2011) · Zbl 1304.65170 · doi:10.1007/s10910-011-9824-5
[152] H. Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Mod. Phys. C 17(5), 663-675 (2006) · Zbl 1107.82304 · doi:10.1142/S0129183106009394
[153] H. Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339-1348 (2007) · Zbl 1121.65086 · doi:10.1016/j.camwa.2006.06.012
[154] Y. Fang, W. Xinyuan, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178-185 (2007) · Zbl 1344.65060
[155] B. Neta, P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117-126 (2007) · Zbl 1127.65049 · doi:10.1016/j.camwa.2005.11.041
[156] H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \[\text{ Y }^{\prime \prime } = \text{ F }(\text{ X },\text{ Y })Y″=F\](X,Y). J. Comput. Appl. Math. 209(1), 33-53 (2007) · Zbl 1141.65061 · doi:10.1016/j.cam.2006.10.025
[157] H. Van de Vyver, Efficient one-step methods for the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 711-732 (2008) · Zbl 1199.65239
[158] J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer. Algorithms 48(4), 327-346 (2008) · Zbl 1148.65059 · doi:10.1007/s11075-008-9202-y
[159] A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871-890 (2010) · Zbl 1200.81051 · doi:10.1007/s10910-009-9606-5
[160] F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. 2011 Article ID 407151 (2011) · Zbl 1238.65069
[161] H. Van de Vyver, Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109-122 (2005) · Zbl 1196.81081 · doi:10.1016/j.cpc.2004.11.002
[162] Z. Wang, D. Zhao, Y. Dai, W. Dongmei, An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2058), 1639-1658 (2005) · Zbl 1139.65310 · doi:10.1098/rspa.2004.1438
[163] M. Van Daele, G. Vanden Berghe, H. De Meyer, Properties and implementation of R-adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37-54 (1995) · Zbl 0837.65079 · doi:10.1016/0898-1221(95)00155-R
[164] J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163-171 (2001) · Zbl 0992.65079 · doi:10.1023/A:1011175722328
[165] Z. Wang, Trigonometrically-fitted method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109-118 (2006) · Zbl 1196.65061 · doi:10.1016/j.cpc.2005.09.005
[166] Z. Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241-249 (2006) · Zbl 1196.65137 · doi:10.1016/j.cpc.2006.03.004
[167] J. Vigo-Aguiar, J.M. Ferrandiz, A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684-1708 (1998) · Zbl 0916.65081 · doi:10.1137/S0036142995286763
[168] J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187-211 (2003) · Zbl 1042.65053 · doi:10.1016/S0377-0427(03)00473-4
[169] J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195-206 (2004) · Zbl 1070.65066 · doi:10.1023/B:SUPE.0000009322.23950.53
[170] C. Tang, H. Yan, H. Zhang, W.R. Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171-182 (2004) · Zbl 1052.65065 · doi:10.1016/j.cam.2003.12.015
[171] C. Tang, H. Yan, H. Zhang, Z. Chen, M. Liu, G. Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155-168 (2005) · Zbl 1063.65062 · doi:10.1016/j.cam.2004.03.003
[172] H. Van de Vyver, Frequency evaluation for exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 184(2), 442-463 (2005) · Zbl 1077.65082 · doi:10.1016/j.cam.2005.01.020
[173] J.P. Coleman, L.G. Ixaru, Truncation errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441-1465 (2006) · Zbl 1123.65016 · doi:10.1137/050641752
[174] J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287-313 (2007) · Zbl 1125.65067 · doi:10.1007/s10915-007-9132-1
[175] J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Commun. 178(1), 15-34 (2008) · Zbl 1196.65118 · doi:10.1016/j.cpc.2007.07.007
[176] B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499-2512 (2012) · Zbl 1266.65029 · doi:10.1016/j.cpc.2012.06.013
[177] Z. Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11-12), 692-699 (2006) · Zbl 1196.65126 · doi:10.1016/j.cpc.2006.07.015
[178] C. Wang, Z. Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Mod. Phys. C 18(3), 419-431 (2007) · Zbl 1200.65065 · doi:10.1142/S0129183107010449
[179] J. Chen, Z. Wang, H. Shao, H. Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff method. Comput. Phys. Commun. 179(7), 486-491 (2008) · doi:10.1016/j.cpc.2008.04.010
[180] H. Shao, Z. Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1-7 (2009) · Zbl 1198.81102 · doi:10.1016/j.cpc.2008.08.002
[181] H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: reduction of the error due to space discretization. Phys. Rev. E 79(5) Article Number: 056705 (2009)
[182] Z. Wang, H. Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842-849 (2009) · Zbl 1198.81107 · doi:10.1016/j.cpc.2008.11.022
[183] Z. Chen, C. Liu, C.-W. Hsu, T.E. Simos, A new multistage multistep full in phase algorithm with optimized characteristics for problems in chemistry. J. Math. Chem. 57(4), 1112-1139 (2019) · Zbl 1414.81279 · doi:10.1007/s10910-019-01011-6
[184] T.E. Simos, Exponentially fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315-332 (2000) · doi:10.1016/S0927-0256(00)00112-9
[185] C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)
[186] F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)
[187] A.R. Leach, Molecular Modelling—Principles and Applications (Pearson, Essex, 2001)
[188] P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011) · Zbl 1229.70001
[189] V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016) · doi:10.1063/1.4952240
[190] V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015) · doi:10.1063/1.4913088
[191] N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvest. Vysshikh Uchebnykh Zavedenii Aviat. Tekh. 1, 49-53 (1998)
[192] V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331-335 (2015)
[193] S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231-236
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.